Геометрические характеристики крыла. Самый лучший профиль для СЛА Ламинарный профиль крыла

Одним из важных этапов строительства авиамодели является расчет и проектирование крыльев. Для того, чтобы правильно спроектировать крыло, необходимо учесть несколько моментов: правильно выбрать корневой и концевой профили, правильно их выбрать исходя из нагрузок, которые они обеспечивают, а также правильно спроектировать промежуточные аэродинамические профиля.

С чего начинается конструирование крыльев

В начале конструирования на кальке был сделан предварительный эскиз самолёта в натуральную величину. В ходе этого этапа я определился с масштабом модели и с размахом крыльев.

Определение размаха

Когда предварительный размах крыла был утвержден, наступило время для определения веса. Эта часть расчета имела особое значение. Первоначальный план включал в себя размах крыльев в 115 см, однако, предварительный расчет показал, что нагрузка на крыльях будет слишком высокой. Поэтому я масштабировал модель до размаха в 147 см без учета законцовок крыльев. Такая конструкция оказалась более подходящей с технической точки зрения. После расчета мне осталось сделать весовую таблицу со значениями весов. В свою таблицу я также добавил усредненные значения веса обшивок, например, вес бальзовой обшивки самолёта был определен мной, как произведение площади крыла на два (для низа и верха крыла) на вес квадратного метра бальзы. Тоже самое было сделано для хвостового оперения и рулей высоты. Вес фюзеляжа был получен путем умножения площади боковой стороны, а также верха фюзеляжа на два и на плотность квадратного метра бальзы.

В результате я получил следующие данные:

  • Липа, 24 унции на кубический дюйм
  • Бальза 1/32’’, 42 унции на квадратный дюйм
  • Бальза 1/16’’, 85 унций на квадратный дюйм

Устойчивость

После определения веса были рассчитаны параметры устойчивости для того, чтобы убедиться, что самолёт будет устойчивым и все детали будут адекватного размера.

Для устойчивого полёта необходимо было обеспечить несколько условий:

  1. Первый критерий — значение средней аэродинамической хорды (САХ). Его можно найти геометрическим путем, если добавить к корневой хорде с двух сторон концевую, а к концевой хорде с двух сторон корневую, а потом соединить крайние точки вместе. В точке пересечения и будет находится центр САХ.
  2. Значение аэродинамического фокуса крыла составляет 0,25 от значения САХ.
  3. Этот центр необходимо найти как для крыльев, так и для рулей высоты.
  4. Далее определяется нейтральная точка самолёта: она показывает центр тяжести самолета, а также вычисляется вместе с центром давления (центром подъемной силы).
  5. Далее определяется статическая граница. Этот критерий оценивает устойчивость самолёта: чем он выше, тем больше устойчивость. Однако, чем более устойчивее самолёт, тем он более маневренный и менее управляемый. С другой стороны на слишком неустойчивом самолёте тоже нельзя летать. Среднее значение этого параметра — от 5 до 15%
  6. Также рассчитываются коэффициенты оперения. Эти коэффициенты используются для сравнения эффективности аэродинамики руля высоты через соотношение размеров и расстояния до крыла.
  7. Коэффициент вертикального оперения обычно находится между 0,35 и 0,8
  8. Коэффициент горизонтального оперения обычно между 0,02 и 0,05

Выбор правильного аэродинамического профиля

Выбор правильного профиля определяет правильное поведение самолёта в воздухе. Ниже я привожу ссылку на простой и доступный инструмент для проверки аэродинамических профилей. В качестве основы для выбора профилей я выбрал концепцию, согласно которой длина хорды на законцовке крыла равна половине длины хорды в корневой части. Наилучшее решение того, чтобы не допустить срыв потока на крыле, которое я нашел, заключалось в резком сужении крыла на законцовке без возможности сохранения управления самолётом до набора достаточной скорости. Я добился этого с помощью разворота крыла вниз на конце и через тщательный подбор корневых и концевых профилей.

В корне я выбрал аэродинамический профиль S8036 с толщиной крыла в 16% от длины хорды. Такая толщина позволила заложить лонжерон достаточной прочности, а также выдвижные шасси внутри крыла. Для концевой части был выбран профиль – S8037, который также имеет толщину в 16% от толщины хорды. Такое крыло будет уходить в срыв при большом коэффициенте подъёмной силы, а также при большем угле атаки, чем S8036 при том же числе Рейнольдса (этот термин служит для сравнения профилей разного размера: чем больше число Рейнольдса, тем больше хорда). Это значит, что при том же числе Рейнольдса в корневой части крыла срыв произойдет быстрее, чем на законцовке, но контроль за управлением сохранится. Однако, даже если длина хорды корня в два раза больше длины хорды законцовки, она имеет число Рейнольдса в два раза большее, а увеличение числа приведет к задерживанию сваливания. Именно поэтому, я развернул законцовку крыла вниз, так что оно перейдет в сваливание только после корневой части.

Ресурс для определения аэродинамических профилей: airfoiltools.com

Теория по основам конструирования крыльев

Конструкция крыла должна обеспечивать достаточную подъёмную силу для веса самолёта и дополнительных нагрузок, связанных с маневрированием. В основном это достигается с помощью использования центрального лонжерона, который имеет два пояса, верхний и нижний, каркаса, а также тонкой обшивки. Несмотря на то, что каркас крыла тонкий он обеспечивает крылья достаточной прочностью на изгиб. Также в конструкцию часто входят дополнительные лонжероны для уменьшения лобового сопротивления в передней части задней кромки. Они способны воспринимать как изгибающие нагрузки, так и увеличивать жесткость при кручении. Наконец передняя кромка может быть отодвинута назад за лонжерон для получения закрытого поперечного каркаса, который называется D-образным и служит для восприятия крутильных нагрузок. На рисунке наиболее часто встречающиеся профиля.

  1. Верхнее крыло имеет лонжерон двутаврового сечения, у которого каркас располагается в центре, а также переднюю кромку с обшивкой, которая называется D – трубкой. D – трубка позволяет увеличить жесткость при кручении, и может быть добавлена к любым другим конструкциям лонжеронов, а также может быть расширена до задней кромки для создания полностью обшитого крыла. У данного крыла задний лонжерон просто является вертикальной опорой. Также имеется простая плоскость управления, проще говоря, закрылок, подвешенный шарнирно вверху. Такую конструкцию легко воспроизвести.
  2. Второе крыло имеет C – образный лонжерон, который имеет усиленный основной лонжерон, лучше приспособленный для восприятия лобовых нагрузок. Крыло снабжено центральным шарниром, который уменьшает щель, а также лобовое сопротивление по сравнению с верхним шарниром.
  3. У третьего профиля лонжерон в виде трубы, такие обычно делаются из пластиковых трубок, их удобно изготовлять, но если трубки непрямые или скрученные, то скрутить крыло может стать проблемой. Частично проблему можно решить, используя дополнительно D – образную трубку. Кроме того, лонжерон сделан из С – образного профиля, что значительно увеличивает жесткость крыла. Петля представляет собой округленный профиль с точкой разворота в центре закругленной передней кромки для уменьшения петельной щели и для ровных краев.
  4. Четвертый профиль имеет полностью коробчатый лонжерон с каркасом как спереди, так и сзади. Зазор имеет ту же особенность, что и предыдущий профиль, и ту же самую плоскость управления. Но у него есть обтекатели сверху и снизу для скрытия щели.

Все эти конструкции крыльев являются типовыми для лонжеронов и для создания крепежных петель у радиоуправляемых самолётов. Эти конструкции без исключения являются единственным способом технической реализации закрылков и элеронов, а другие различные решения можно подогнать к ним же.

C – образный или коробчатый лонжерон?

Для своего самолёта я выбрал деревянный C – образный профиль лонжерона с прочной передней кромкой и простым вертикальным лонжероном. Полностью крыло обшито бальзой для создания жесткости при кручении и для эстетики.

Дерево было выбрано взамен пластиковой трубки поскольку самолёт спроектирован с 2 градусным внутренним углом, а соединение в виде пластиковой трубки в центре крыла не сможет долго сопротивляться изгибающим нагрузкам. C – образный профиль лонжерона является также более благоприятным по сравнению с двутавровым профилем, поскольку в лонжероне должен быть сделан слот на всю его длину для установки в решетку. Эта добавленная сложность не за счет заметного увеличения прочности и соотношения веса лонжерона. Коробчатый лонжерон также был отвергнут, поскольку он сильно увеличивает вес, однако, его не так сложно построить, а по прочности он один из лучших. Простой вертикальный лонжерон, совмещенный с петлевым обтекателем, вот таким был выбор конструкции крыла, когда остальная часть крыла обшита и достаточно прочна без каких либо дополнительных опор.

  • Лонжерон. Лонжерон крыла спроектирован для восприятия изгибающей нагрузки от подъёмной силы крыла. Он не предназначен для восприятия скручивающей силы, созданной аэродинамическими силами крыла, а нагрузка ложится на обшивку крыла. Это распределение нагрузки подходит для легкой и очень эффективной нагрузки, поскольку каждая деталь занимает именно своё место.
  • Полки лонжеронов крыла выполнены из броска липы размерами ¼ x ½ x 24’’. Липа была выбрана в качестве материала, поскольку хорошо обрабатывается и имеет хорошую прочность для своего веса. Кроме того, подкупает простота приобретения брусков подходящего размера в специализированных магазинах, поскольку у меня не было под рукой деревообрабатывающего станка для распиловки досок.
  • Каркас крыла сделан из липового листа, толщиной 1/32”, который крепится к полкам лонжеронам сверху и снизу. Подобный каркас является необходимостью поскольку он кардинально улучшает жесткость и прочность крыльев даже при очень малом весе.
  • Задняя кромка крыла/задний лонжерон выполнен из бальзового листа толщиной 1/16”, что помогает добавить жесткость при кручении, а также унифицировать нервюры крыла и крепить плоскости управления к задней части нервюр.

Проектирование нервюр с помощью AutoСAD

Оказывается, изготовление нервюр для трапециевидного крыла может стать вдохновляющим занятием. Есть несколько методов: первый метод основан на вырезании профиля крыла по трафарету сначала для корневой части, а потом для законцовки крыла. Он заключается в сочленении обоих профилей вместе с помощью болтов и вычерчивании по ним всех остальных. Этот метод особенно хорош для изготовления прямых крыльев. Основное ограничения метода – он подходит только для крыльев с незначительным сужением. Проблемы возникают из-за резкого роста угла между профилями при значительной разнице между хордой законцовки и хордой корня крыла. В этом случае во время сборки могут сложности из-за большого отхода дерева, острых углов и краёв нервюр, которые надо будет удалить. Поэтому я воспользовался своим методом: сделал свои собственные шаблоны для каждой нервюры, а затем обработал их так, чтобы получить идеальную форму крыла. Задача оказалась сложнее, чем я ожидал, поскольку шаблон корневой части отличался от законцовки кардинально, а все профиля между ними были комбинацией двух предыдущих, вместе с кручением и растяжением. В качестве программы проектирования я использовал Autodesk AutoCAD 2012 Student Addition, поскольку съел на этом собаку при моделировании RC моделей самолётов в прошлом. Проектирование нервюр происходит в несколько этапов.

Всё начинается с импорта данных. Самый быстрый способ для импорта аэродинамического профиля (профили можно найти в базах данных UIUC аэродинамических профилей) в AutoCAD, который я нашел, заключается в создании табличного файла в формате excel в виде таблицы с колонками координат точек профиля x и y. Единственное, что следует перепроверить — соответствуют ли первая и последняя точка друг другу: получается ли у вас замкнутый контур. Затем скопировать полученное назад в txt файл и сохранить его. После того, как это проделано, следует вернуться назад и выделить всю информацию на предмет, если вы случайно вставили заголовки. Затем в AutoCAD запускается команда «spline» и «paste» для обозначения первой точки эскиза. Жмем «enter» до конца выполнения процесса. Аэродинамический профиль в основном обрабатывается таким образом, что каждая хорда становится отдельным элементом, это весьма удобно для изменения масштаба и геометрии.

Рисование и взаимное расположение профилей в соответствие плану. Передняя кромка и лонжероны должны быть тщательно доведены до нужного размера, при этом надо помнить про толщину обшивки. На чертеже, следовательно, лонжероны должны быть нарисованы уже, чем они есть на самом деле. Желательно сделать лонжероны и переднюю кромку выше, чем они есть на самом деле, для того, чтобы рисунок лег ровнее. Также пазы на лонжеронах должны быть расположены таким образом, чтобы оставшаяся часть лонжерона уместилась в нервюрах, но осталась при этом квадратной.

На рисунке показаны основные аэродинамические профиля перед тем, как они будут разбиты на промежуточные.

Лонжерон и совместная с ним передняя кромка соединены вместе, чтобы потом их можно было исключить из построения.

Аэродинамические профили сопряжены вместе и образуют форму крыла при видимом лонжероне и передней кромке.

Лонжерон и передняя кромка удалены с помощью операции «subtract», остальные части крыла показаны.

Крыло вытягивается с помощью функции «solidedit» и «shell». Далее выделяются поочередно плоскости корневой части крыла и законцовки, удаляются, а то, что получается и есть обшивка крыла. Поэтому внутренняя часть обшивки крыла является основой для нервюр.

С помощью функции «плоскость сечения» формируются эскизы каждого профиля.

После этого под командой «плоскость сечения» выбирается создание раздела. С помощью этой команды созданные профили во всех точках профиля могут быть отображены. Для помощи в выравнивании нервюр крыльев я строго рекомендую создать на каждом сечении горизонтальную линию от задней кромки крыла до передней. Это позволит правильно выровнять крыло, если оно построено с кручением, а также сделать его прямым.

Поскольку эти шаблоны на самом деле созданы с учетом обшивки крыльев, внутренняя линия профилей является правильной линией для построения нервюр.

Теперь, когда все нервюры промаркированы с помощью команды «text», они готовы к печати. На каждой странице с нервюрами я разместил схематически коробку с площадкой, доступной для печати на принтере. Маленькие нервюры можно печатать на толстой бумаге, а для крупных аэродинамических профилей подойдет обычная бумага, которая затем усиливается перед вырезанием.

Комплектация деталей

После конструирования крыла, анализа и подбора всех необходимых для изготовления авиамодели деталей, был сделан список всего необходимого для постройки.

Пожалуй, главным самолетным агрегатом является крыло. Именно крыло, создающее подъемную силу, держит многотонный самолет в воздухе, не давая ему упасть. Не случайно у конструкторов существует выражение о том, что тот, кто владеет крылом, управляет и самолетом. Погоня за улучшением аэродинамических характеристик летательных аппаратов вынуждает разработчиков постоянно совершенствовать крыло, работая над его формой, весом и профилем.

Крыло в профиль

Профиль крыла самолета - это геометрическое сечение крыла, проходящее параллельно оси самолета. Или проще - вид крыла сбоку. За долгие годы развития авиастроения в разных лабораториях и институтах постоянно разрабатывали и испытывали крылья самой различной конфигурации. Росли скорости, масса самолетов, менялись задачи — и все это требовало новые профили крыла.

Виды профилей

На сегодняшний день существуют различные профили крыла, отличающиеся по назначению. Один и тот же тип может иметь множество вариантов и применяться на различных самолетах. Но в целом существующие основные типы профилей можно проиллюстрировать изображением ниже.

  1. Симметричный.
  2. Несимметричный.
  3. Плосковыпуклый.
  4. Двояковыпуклый.
  5. S-образный.
  6. Ламинизированный.
  7. Чечевицеобразный.
  8. Ромбовидный.
  9. Клиновидный.

На отдельных самолетах применяется изменяющийся профиль по длине крыла, но обычно его форма неизменна на всем протяжении.

Геометрия

Внешне профиль крыла напоминает червяка или что-то в этом роде. Являясь сложной геометрической фигурой, имеет свой набор характеристик.

На приведенном рисунке указаны основные геометрические характеристики профиля крыла самолета. Расстояние (b) называется хордой крыла, представляет собой расстояние между крайними точками спереди и сзади. Относительная толщина определяется отношением максимальной толщины профиля (Cmax) к его хорде и выражается в процентах. Координата максимальной толщины представляет собой отношение расстояние от носка до места максимальной толщины (Xc) к хорде (b) и также выражается в процентах. Средней линией является условная кривая, равноудаленная от верхних и нижних панелей крыла, а стрелкой прогиба (fmax) называется максимальное удаление средней линии от хорды. Еще один показатель - относительная кривизна — рассчитывается методом деления (fmax) на хорду (b). Традиционно все эти величины выражаются в процентах. Кроме уже упомянутых, существует радиус носика профиля, координаты наибольшей вогнутости и еще ряд других. Каждый профиль имеет свой шифр и, как правило, основные геометрические характеристики в этом шифре присутствуют.

Например, профиль В6358 имеет толщину профиля в 6 %, положение стрелки вогнутости 35 % и относительную кривизну 8 %. Система обозначений, к сожалению, не унифицирована, и разные разработчики применяют шифры каждый по-своему.

Аэродинамика

Причудливые, на первый взгляд, рисунки сечений крыла делаются не из-за любви к высокому искусству, а исключительно в прагматичных целях - для обеспечения высоких аэродинамических характеристик профилей крыла. К этим важнейшим характеристикам относятся коэффициент подъемной силы Су и коэффициент сопротивления Сх для каждого конкретного профиля. Сами коэффициенты не имеют постоянного значения и зависят от угла атаки, скорости и некоторых других характеристик. После проведения испытаний в аэродинамической трубе для каждого профиля крыла самолета может быть составлена так называемая поляра. Она отражает зависимость между Сх и Су при определенном угле атаки. Созданы специальные справочники, содержащие подробную информацию о каждом аэродинамическом профиле крыла и иллюстрированные соответствующими графиками и схемами. Эти справочники находятся в свободном доступе.

Выбор профиля

Разнообразие летательных аппаратов, типы их двигательных установок и их назначение требуют тщательного подхода к выбору профиля крыла самолета. При проектировании новых летательных аппаратов обычно рассматривается несколько альтернатив. Чем больше относительная толщина крыла, тем больше сопротивление. Но при тонких крыльях большой длины сложно обеспечить надлежащую прочность конструкции.

Отдельно стоит вопрос по сверхзвуковым машинам, требующим особого подхода. Совершенно естественно, что профиль крыла самолета Ан-2 ("кукурузник") будет отличаться от профиля истребителя и пассажирского лайнера. Симметричный и S-образный профили крыла создают меньшую подъемную силу, но отличаются стабильностью, тонкое крыло с небольшим изгибом подходит для скоростных спортивных машин и истребителей, а профилем крыла с наибольшей подъемной силой можно назвать толстое крыло с большим изгибом, применяемое на больших пассажирских самолетах. Сверхзвуковые самолеты оснащаются крыльями, имеющими чечевицеобразный профиль, а для гиперзвуковых применяются ромбовидные и клиновидные профили. Следует иметь в виду, что создав самый лучший профиль, можно потерять все его преимущества только из-за некачественной обработки поверхности панелей крыла или неудачной конструкции самолета.

Метод расчета характеристик

В последнее время расчеты характеристик крыла определенного профиля осуществляются с использованием ЭВМ, которые способны проводить многофакторное моделирование поведения крыла в разных условиях. Но самым надежным способом являются естественные испытания, проводимые на специальных стендах. Отдельные сотрудники «старой школы» могут продолжать делать это вручную. Звучит метод просто угрожающе: «полный расчет крыла с использованием интегродифференциальных уравнений относительно неизвестной циркуляции». Суть метода заключается в представлении циркуляции воздушного потока вокруг крыла в виде тригонометрических рядов и в поиске коэффициентов этих рядов, которые удовлетворяют граничным условиям. Работа эта очень трудоемкая и все равно дает лишь приблизительные характеристики профиля крыла самолета.

Конструкция крыла самолета

Красиво нарисованный и детально рассчитанный профиль необходимо изготовить в реальности. Крыло, помимо выполнения своей основной функции - создания подъемной силы, должно выполнять еще ряд задач, связанных с размещением топливных баков, различных механизмов, трубопроводов, электрических жгутов, датчиков и много другого, что делает его крайне сложным техническим объектом. Но если говорить очень упрощенно, крыло самолета состоит из набора нервюр, которые обеспечивают формирование нужного профиля крыла, располагающихся поперек крыла, и лонжеронов, располагающихся вдоль. Сверху и снизу эта конструкция закрывается обшивкой из алюминиевых панелей со стрингерным набором. Нервюры по внешним обводам полностью соответствуют профилю крыла самолета. Трудоемкость изготовления крыла достигает 40 % от общей трудоемкости изготовления всего самолета.

Ламинарный профиль

Ламинарный профиль

профиль крыла, характеризующийся удалённым от носка положением точки перехода ламинарного течения в турбулентное при естественном обтекании, то есть без использования дополнительной энергии для затягивания перехода, как, например, при отсосе пограничного слоя, охлаждении поверхности (см. Ламинаризация пограничного слоя). Исследования в полёте состояния пограничного слоя на прямом крыле дозвукового самолёта (1938) показали наличие значительных участков ламинарного пограничного слоя. В СССР (И. В. Остославский, Г. П. Свищёв, К. К. Федяевский) и за рубежом были разработаны и применены на ряде самолётов Л. п., форма которых позволяла получать сдвинутое назад положение точки перехода ламинарного пограничного слоя в турбулентный и за счёт этого снижать , а следовательно, и полное аэродинамическое сопротивление самолёта. Для этого форма профиля должна обеспечивать на его поверхности в области ожидаемого ламинарного слоя ускоренное течение с возможно большим градиентом скорости для повышения устойчивости ламинарного течения к возмущениям. Геометрически это достигается смешением назад положения максимальной толщины и вогнутости профиля (см. Кривизна профиля), увеличением относительной толщины профиля и некоторым уменьшением радиуса кривизны носка. При этом с целью предотвращения срыва потока нельзя допускать резкого снижения скорости в хвостовой, диффузорной, части профиля, что приводит к ограничениям на геометрию профиля (недопустимо, например, смещение максимальной толщины и вогнутости за середину профиля, а также чрезмерное увеличение его толщины и вогнутости).
Фактором, ограничивающим возможности естественной ламинаризации пограничного слоя, является стреловидность крыла по передней кромке. При угле стреловидности больше 20-25(°) наблюдается значительное уменьшение области ламинарного течения. Участки с естественной ламинаризацией могут наблюдаться на различных элементах самолёта (носок фюзеляжа, горизонтальные и вертикальные оперения и т. д.). , проведённые при дозвуковых скоростях на самолётах с прямыми крыльями и крыльями с углом стреловидности менее 20(°), скомпонованными из Л. п., подтвердили наличие протяжённых ламинарных участков (до 30-50% хорды). При этом критические Рейнольдса числа, определенные по длине ламинарного участка, достигали Re* (≈) 10-12)*106. Проведённые в середине 80-х гг. в СССР (ЦАГИ) и за рубежом расчётные и экспериментальные исследования при больших числах Рейнольдса показали возможность получения протяжённых (вплоть до середины хорды) ламинарных участков при околозвуковом обтекании профилей с ускорением потока в местной сверхзвуков зоне. При этом полёта должно быть ограниченным, не допускающим возникновения интенсивных скачков уплотнения и заметного волнового сопротивления. Применение сверхкритических профилей с ускорением потока в местной сверхзвуковой зоне позволяет снизить сопротивление при повышенных дозвуковых скоростях полёта как за счёт естественной ламинаризации, так и за счёт малого, по сравнению с обычными профилями, волнового сопротивления.

Авиация: Энциклопедия. - М.: Большая Российская Энциклопедия . Главный редактор Г.П. Свищев . 1994 .


Смотреть что такое "Ламинарный профиль" в других словарях:

    ламинарный профиль Энциклопедия «Авиация»

    ламинарный профиль - ламинарный профиль — профиль крыла, характеризующийся удалённым от носка положением точки перехода ламинарного течения в турбулентное при естественном обтекании, то есть без использования дополнительной энергии для затягивания перехода, как … Энциклопедия «Авиация»

    Bell P-63 «Kingcobra» - Bell P 63 «Kingcobra» Лётно технические характеристики Двигатель Авиационное артиллерийское оружие Авиационные средства поражения Классификаторы Факты Использование в иностранных ВВС Модификации Галерея … Военная энциклопедия

    HA 420 HondaJet Тип бизнес джет Разработчик Honda Aircraft Company … Википедия

    Проекция касательных напряжений, приложенных к обтекаемой поверхности тела, на направление его движения. С. т. есть составная часть сопротивления аэродинамического (СА) и обусловлено проявлением действия сил внутреннего трения (вязкости); при… … Энциклопедия техники Энциклопедия «Авиация»

    Уменьшение сопротивления шара с возрастанием скорости набегающего потока при Рейнольдса числах Re, близких к критическому значению Re.(Кризис сопротивления) 1,5*105. Явление было установлено в 1912 А. Г. Эйфелем, объяснено в 1914 Л. Прандтлем.… … Энциклопедия техники

Само понятие профиль, я думаю, ясно каждому. Помните, «фото в профиль и анфас»…

профиль крыла в потоке

По простому говоря, это поперечное сечение крыла (не крыльев, а именно крыла, об этом мы с вами договорились ).

Однако по простому, да не совсем, потому что профиль крыла – это, говоря официальным языком, одна из основных составляющих, формирующих летательный аппарат и самолет в частности, так как крыло все же его неотъемлемая часть. Совокупность некоторого количества профилей составляют целое крыло, причем по всему размаху крыла они могут быть разные. А от того, какие они будут, зависит назначение самолета и то, как он будет летать. Например, скоростной и высотный самолет всегда имеет тонкий профиль крыла с острой передней кромкой. Известные предствители этого класса – самолеты МИГ-25 и МИГ-31. В то же время большинство пассажирских лайнеров имеют профиль с большой относительной толщиной и закругленной передней кромкой.

Типов профилей достаточно много, но форма их принципиально всегда каплевидна. Этакая сильно вытянутая горизонтальная капля. Однако капля эта обычно далека от совершенства, потому что кривизна верхней и нижней поверхностей у разных типов разная, как впрочем и толщина самого профиля. Классика – это когда низ близок к плоскости, а верх выпуклый по определенному закону. Это так называемый несимметричный профиль, но есть и симметричные, когда верх и низ имеют одинаковую кривизну.

Каждый образец математически рассчитывается согласно законам королевы авиационных наук аэродинамики. А потом продувается в аэродинамической трубе на различных режимах для иммитации полетных условий и сбора необходимых характеристик.

Эволюция профиля крыла. Исторические разработки NASA.

Всеми полученными данными потом могут пользоваться разработчики различной авиационной техники (от авиа моделистов до современных самолетов) для выбора подходящего варианта. Существуют даже так называемые таблицы профилей. А профиль крыла, о котором мы говорим, вообще-то более точно называется аэродинамический профиль крыла , потому что это один из основных терминов, которыми оперирует аэродинамика.

Разработка аэродинамических профилей проводилась практически с начала истории авиации, проводится она и сейчас.

Делается это в специализированных учреждениях. Ярчайшим представителем такого рода учреждений в России является ЦАГИ – Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского. А в США – такие функции выполняет Исследовательский центр в Лэнгли (подразделение NASA).

Фотографии кликабельны.

Профили крыла планеров В6356b- самый известный и распространенный во всем мире профиль , «выигравший» большинство соревнований самого высокого ранга. Он действительно универсален и имеет неплохие перспективы на будущее. Данный профиль применяли одессит В.Чоп (чемпион мира 1975 и 1987 года) и эстонец А. Лепп (чемпион Европы 1988 и чемпион мира 1989 года). Если Чоп использовал этот профиль в чистом виде, то Лепп сильно модернизировал его в сторону увеличения кривизны профиля без изменения толщины. От редакции. Небольшое замечание по поводу «модернизации», которую провел А. Лепп. Изменение кривизны или формы средней линии дает столь выраженные изменения характеристик, что теперь можно говорить о совершенно новом профиле (созданном, правда, с использованием тех или иных готовых компонентов). Кроме того, нужно помнить, что нередко цифры в «названии» профиля обозначают его геометрические параметры. Это относится и к профилям Бенедека. В нашем случае цифровой ряд 6356 обозначает, что толщина профиля равна 6%, максимальная вогнутость располагается на 35% хорды от носика, и вогнутость профиля равна 6%. Здесь уместно заметить, что профили типа NACA шифруются аналогично, но у них на первом месте стоит не толщина профиля, а величина вогнутости. В любом случае понятно, что изменение формы средней линии неизбежно должно приводить и к замене цифрового «названия» профиля.

Thomann F4. Этот профиль долгое время был самым популярным в Европе и обеспечивал весьма высокие для той поры результаты. Он применялся с турбулизатором типа «зигзаг», располагаемом на расстоянии 5 мм от передней кромки и имевшим ширину 7 мм при толщине 1 мм с углом «зуба» 60°.

Ritz-7455G. Данный профиль создан известным американским планеристом, чемпионом мира 1959 года Д. Ритцем.

Ritz-7455G уже 20 лет как получил «путевку в жизнь» на моделях планеров российских спортсменов. Одним из первых его применил ленинградец Ю. Яблоков, на рубеже 80-х годов ставший первым из советских планеристов обладателем Кубка мира (он был также победителем Кубков и Чемпионатов СССР). Ведущие московские спортсмены С. Макаров и М. Кочкарев, являющиеся сегодня законодателями технической моды в классе F1A, как и чемпион мира 1997 года киевлянин В. Стамов, применяют этот профиль уже более 10 лет. Они слегка модернизировали его для улучшения технологии сборки крыльев на стапелях.

Купфер. В свое время отечественные планеристы создали ряд профилей , имевших несомненную перспективу. Особо стоит отметить разработку доктора технических наук М. Купфера. Его профиль в конце 50-х годов был продут в аэродинамической трубе и показал выдающиеся характеристики. Из-за малой относительной толщины он тогда не получил распространения. Сейчас создание жестких крыльев малой толщины не представляет большой проблемы. Поэтому, возможно, теперь профиль Купфера сможет занять должное место на моделях планеров.