Гибкий магнитный диск: структура, преимущества и недостатки. Что такое дискета? Дисковод FDD или накопитель для гибких дисков — что за штуковина

3.4. ПАМЯТЬ КОМПЬЮТЕРА

НАКОПИТЕЛИ НА ГИБКИХ МАГНИТНЫХ ДИСКАХ

Дискета - портативный магнитный носитель информации, используемый для многократной записи и хранения данных сравнительно небольшого объема. Этот вид носителя был особенно распространён в 1970-х - конце 1990-х годов. Вместо термина «дискета» иногда используется аббревиатура ГМД - «гибкий магнитный диск» (соответственно, устройство для работы с дискетами называется НГМД - «накопитель на гибких магнитных дисках»).

Обычно дискета представляет собой гибкую пластиковую пластинку, покрытую ферромагнитным слоем, отсюда английское название «floppy disk » («гибкий диск»). Эта пластинка помещается в пластмассовый корпус, защищающий магнитный слой от физических повреждений. Оболочка бывает гибкой или жёсткой. Запись и считывание дискет осуществляется с помощью специального устройства - дисковода гибких дисков (флоппи-дисковода).

Дискеты обычно имеют функцию защиты от записи, посредством которой можно предоставить доступ к данным только в режиме чтения.


Гибкие дискеты (8 ″; 5,
25 ″; 3,5″ соответственно)

История

· 1971 - Первая дискета диаметром в 200 мм (8″) с соответствующим дисководом была представлена фирмой IBM. Обычно само изобретение приписывается Алану Шугарту , работавшему в конце 1960-х годов в IBM.

· 1973 - Алан Шугерт основывает собственную фирму Shugart Associates .

· 1976 - Алан Шугерт разработал дискету диаметром 5,25″.

· 1981 - Sony выводит на рынок дискету диаметром 3,5″ (90 мм). В первой версии объём составляет 720 килобайт (9 секторов). Поздняя версия имеет объём 1440 килобайт или 1,40 мегабайт (18 секторов). Именно этот тип дискеты становится стандартом (после того, как IBM использует его в своём IBM PC).

Позже появились так называемые ED-дискеты (от англ. Extended Density - «расширенная плотность»), имевшие объём 2880 килобайт (36 секторов), которые так и не получили широкого распространения.

Форматы

Хронология возникновения форматов дискет

Формат

Год возникновения

Объём в килобайтах

8″ двойной плотности

5,25″ двойной плотности

5,25″ четырёхкратной плотности

5,25″ высокой плотности

3″ двойной плотности

3,5″ двойной плотности

3,5″ высокой плотности

3,5″ расширенной плотности

Следует отметить, что фактическая ёмкость дискет зависела от способа их форматирования. Поскольку кроме самых ранних моделей, практически все флоппи-диски не содержали жёстко сформированных дорожек, дорога для экспериментов в области более эффективного использования дискеты была открыта для системных программистов. Результатом стало появление множества не совместимых между собою форматов дискет даже под одними и теми же операционными системами. Например, для RT-11 и её адаптированных в СССР версий количество находящихся в обороте несовместимых форматов дискеты превышало десяток. (Наиболее известные - MX, MY применяемые в ДВК).

Дополнительную путаницу внёс тот факт, что компания Apple использовала в своих компьютерах Macintosh дисководы, применяющие иной принцип кодирования при магнитной записи, чем на IBM PC. В результате, несмотря на использование идентичных дискет, перенос информации между платформами на дискетах не был возможен до того момента, когда Apple внедрила дисководы высокой плотности SuperDrive , работавшие в обоих режимах.

«Стандартные» форматы дискет IBM PC различались размером диска, количеством секторов на дорожке, количеством используемых сторон (SS обозначает одностороннюю дискету, DS - двухстороннюю), а также типом (плотностью записи) дисковода. Тип дисковода маркировался как SD - одинарная плотность, DD - двойная плотность, QD - четверная плотность (использовался в клонах, таких как Robotron-1910 - 5,25″ дискета 720 К , Amstrad PC, ПК Нейрон - 5,25″ дискета 640 К, HD - высокая плотность (отличался от QD повышенным количеством секторов), ED - расширенная плотность.

Рабочие плотности дисководов и ёмкости дискет в килобайтах

Плотность

Дюймов

8-дюймовые дисководы долгое время были предусмотрены в BIOS и поддерживались MS-DOS, но точной информации о том, поставлялись ли они потребителям, нет (возможно, поставлялись предприятиям и организациям и не продавались физическим лицам).

Кроме вышеперечисленных вариаций форматов, существовал целый ряд усовершенствований и отклонений от стандартного формата дискет. Наиболее известные - 320/360 Кб дискеты Искра-1030/Искра-1031 - фактически представляли из себя SS/QD дискеты, но бут-сектор их был отмаркирован как DS/DD. В результате стандартный дисковод IBM PC не мог прочесть их без использования специальных драйверов (800.com), а дисковод Искра-1030/Искра-1031, соответственно, не мог читать стандарные дискеты DS/DD от IBM PC.

Специальные драйверы-расширители BIOS 800, pu_1700 и ряд других позволяли форматировать дискеты с произвольным числом дорожек и секторов. Поскольку дисководы обычно поддерживали от одной до 4 дополнительных дорожек, а также позволяли, в зависимости от конструкционных особенностей, отформатировать на 1-4 сектора на дорожке больше, чем положено по стандарту, эти драйвера обеспечивали появление таких нестандартных форматов как 800 Кб (80 дорожек, 10 секторов) 840 Кб (84 дорожки, 10 секторов) и т. д. Максимальная ёмкость, устойчиво достигавшаяся таким методом на 3,5 ″ HD-дисководах, составляла 1700 Кб.

Эта техника была впоследствии использована в Windows 98, а также Майкрософт-овском формате дискет DMF, расширившим ёмкость дискет до 1,68 Мб за счёт форматирования дискет на 21 сектор в аналогичном IBM формате XDF. XDF использовался в дистрибутивах OS/2, а DMF - в дистрибутивах различных программных продуктов от Майкрософт.

Наконец, достаточно частой модификацией формата дискет 3,5″ является их форматирование на 1,2 Мб (с пониженным числом секторов). Эта возможность обычно может быть включена в BIOS современных компьютеров. Такое использование 3,5″ характерно для Японии и ЮА Р. В качестве побочного эффекта, активация этой настройки BIOS обычно даёт возможность читать дискеты, отформатированные с использованием драйверов типа 800.

В дополнителных (нестандартных) дорожках и секторах иногда размещали данные защиты от копирования проприетарных дискет. Стандартные программы, такие как diskcopy , не переносили эти сектора при копировании.

Неформатированная ёмкость дискеты 3,5″, определяемая плотностью записи и площадью носителя, составляет 2 Мб.

Высота дисковода для 5,25″ дискет равна 1 U. Все дисководы компакт-дисков, включая Blu-ray, имеют ширину и высоту такую же, как у 5,25″ дисковода (это не относится к дисководам ноутбуков).

Ширина дисковода 5,25″ почти равна трём его высотам. Это иногда использовали производители корпусов ЭВМ, где три устройства, помещённые в квадратную «корзину», могли быть вместе с ней переориентированы с горизонтального на вертикальное расположение.

Исчезновение

Одной из главных проблем, связанных с использованием дискет, была их недолговечность. Наиболее уязвимым элементом конструкции дискеты был жестяной или пластиковый кожух, закрывающий собственно гибкий диск: его края могли отгибаться, что приводило к застреванию дискеты в дисководе, возвращавшая кожух в исходное положение пружина могла смещаться, в результате кожух дискеты отделялся от корпуса и больше не возвращался в исходное положение. Сам пластиковый корпус дискеты не служил достаточной защитой гибкого диска от механических повреждений (например, при падении дискеты на пол), которые выводили магнитный носитель из строя. В щели между корпусом дискеты и кожухом могла проникать пыль. А сам гибкий диск мог относительно легко размагнититься от воздействия металлических намагниченных поверхностей, природных магнитов, электромагнитных полей вблизи высокочастотных приборов, что делало хранение информации на дискетах крайне ненадежным.

Массовое вытеснение дискет из обихода началось с появлением перезаписываемых компакт-дисков, и особенно, носителей на основе флэш-памяти, обладающих гораздо меньшей удельной стоимостью, на порядки большей емкостью, большим фактическим числом циклов перезаписи и долговечностью и большей скоростью обмена данными.

Промежуточным вариантом между ними и традиционным дискетами являются магнитооптические носители, Iomega Zip , Iomega Jaz и другие. Такие сменные носители иногда также называют дискетами.

Однако, даже в 2009, дискета (обычно 3,5") и соответствующий дисковод необходимы (при невозможности сделать это через интернет непосредственно из операционной системы), чтобы "перепрошить " флэш-память BIOS многих материнских плат, например, Gigabyte . Так же их ещё используют для работы с небольшими файлами (как правило с текстовыми), для переноски этих файлов с одного компьютера на другой. Так что с полной уверенностью можно сказать, что дискеты будут использоваться ещё несколько лет, по крайней мере до того момента, когда цена на самые дешёвые flash-накопители не будет сопоставимы с ценами на дискеты (сейчас их разница ~10 раз, но неуклонно уменьшается).

А контроллер такого устройства принято обозначать аббревиатурой КМД .

Дискеты обычно имеют функцию защиты от записи, посредством которой можно предоставить доступ к данным только в режиме чтения. Дискеты были массово распространены с 1970-х и до конца 1990-х годов , уступив более ёмким и удобным , DVD и флэш-накопителям .

Промежуточным вариантом между ними и традиционным дискетами являются более современные НГМД использующие картриджи - Iomega Zip , Iomega Jaz; а также магнитооптические носители (МО), LS-120 и другие, в которых комбинировался лазер (используемый для разогрева участка поверхности диска) и магнитная головка (для записи и считывания информации с поверхности диска).

История

  • - Алан Шугарт возглавлял команду, которая разрабатывала дисководы в лаборатории фирмы IBM , где были созданы накопители на гибких дисках. Дэвид Нобль (англ. David Noble ), один из старших инженеров, работающих под его руководством, предложил гибкий диск (прообраз дискеты диаметром 8″) и защитный кожух с тканевой прокладкой.
  • - фирмой IBM была представлена первая дискета диаметром в 8″ (200 мм) с соответствующим дисководом.
  • - Алан Шугарт основывает собственную фирму Shugart Associates .
  • - Финне Коннер (англ. Finis Conner ) пригласил Алана Шугарта принять участие в разработке и выпуске дисководов с дисками диаметром 5¼″, в результате чего фирма Shugart Associates, разработав контроллер и оригинальный интерфейс Shugart Associates SA-400, выпустила дисковод для миниатюрных (mini-floppy) гибких дисков на 5¼″, который, быстро вытеснив дисководы для дисков 8″, стал популярным в персональных компьютерах. Компания Shugart Associates также создала интерфейс Shugart Associates System Interface (SASI), который после формального одобрения комитетом ANSI в 1986 году был переименован в Small Computer System Interface (SCSI).
  • - Sony выводит на рынок дискету диаметром 3½″ (90 мм). В первой версии (DD) объём составляет 720 килобайт (9 секторов). В 1984 году фирма Hewlett-Packard впервые использовала этот накопитель в своем компьютере HP-150. Поздняя версия (HD) имеет объём 1440 килобайт или 1,44 мегабайт (18 секторов).
  • 1984 год - фирма Apple стала использовать накопители 3½″ в компьютерах Macintosh
  • 1987 год - 3½″ HD накопитель появился в компьютерных системах PS/2 фирмы IBM и становится стандартом для массовых ПК.
  • 1987 год - официально представлены разработанные в 1980-х годах фирмой Toshiba Corporation дисководы сверхвысокой плотности (англ. Extra High Density, ED ) носителем для которых служила дискета ёмкостью 2880 килобайт или 2,88 мегабайт (36 секторов).
  • 2011 год - фирма Sony в марте 2011 года поставила точку в истории дискет, официально прекратив производство и продажу дискет 3½″.

Форматы, в зависимости от диаметра диска

8″

Конструктивно дискета 8″ представляет собой диск из полимерных материалов с магнитным покрытием, заключенный в гибкий пластиковый футляр. В футляре имелись отверстия: большое круглое в центре - для шпинделя, маленькое круглое - окно индексного отверстия, позволяющего определить начало сектора и прямоугольное с закруглёнными концами - для магнитных головок дисковода. Также внизу располагалась выемка, сняв наклейку с которой, можно было защитить диск от записи.

Форматы дискеты различались количеством секторов на дорожке. В зависимости от формата, дискеты 8″ вмещали следующие объемы информации: 80, 256 и 800 КБ.

5¼″

Дискета 5¼″

Конструкция пятидюймовой дискеты мало отличалась от восьмидюймовой: окно индексного отверстия располагалось справа а не сверху, прорезь для защиты от записи - тоже в правой части дискеты. Для лучшей сохранности диска его футляр делался более жестким, укреплённым по периметру. Для предотвращения преждевременного износа между футляром и диском размещалась антифрикционная прокладка, а края приводного отверстия были укреплены пластиковым или металлическим кольцом (в дискетах высокой плотности это кольцо обычно отсутствовало, так как погрешности его расположения на дискете могут привести к проблемам, возникающим при позиционировании головок).

Существовали дискеты с жёсткой разбивкой на сектора: они отличались наличием нескольких индексных отверстий по количеству секторов. В дальнейшем от такой схемы отказались.

Как дискеты, так и дисководы пятидюймовых дисков существовали одно- и двусторонние. При использовании одностороннего дисковода считать вторую сторону просто перевернув дискету не удавалось из-за расположения окна индексного отверстия - для этого требовалось бы наличие аналогичного окна, расположенного симметрично существующему. Механизм защиты данных также был пересмотрен - окно располагалось справа, и заклеенное отверстие означало защищенный диск. Это было сделано для защиты от неправильной установки.

Форматы записи на пятидюймовые дискеты позволяли хранить на ней 110, 360, 720 или 1200 килобайт данных.

3½″

Принципиальным отличием дискеты 3½″ является жёсткий пластмассовый корпус. Вместо индексного отверстия в дискетах диаметром 3½″ используется металлическая втулка с установочным отверстием, которая находится в центре дискеты. Механизм дисковода захватывает металлическую втулку, а отверстие в ней позволяет правильно позиционировать дискету, поэтому отпала необходимость делать для этого отверстие непосредственно в магнитном диске. В отличие от 8″ и 5¼″ дискет, окно для головок дискеты 3½″ закрыто сдвижной металлической заслонкой, которая открывается при установке её в дисковод. Защита от записи выполнена сдвигающейся шторкой в нижнем левом углу. Снизу справа находятся окошки, позволяющие схеме дисковода по количеству отверстий определить плотность записи на дискету:

  • нет - 720 Кб,
  • одно - 1,44 Мб,
  • два - 2,88 Мб.

Несмотря на многие недостатки - чувствительность к магнитным полям и недостаточную уже к середине 90-х годов ёмкость, формат 3½″ продержался на рынке более четверти века, уйдя лишь после появления доступных по цене накопителей на основе флеш-памяти .

Устройство дискеты 3½″

1 - окошко, определяющее плотность записи (на другой стороне - переключатель защиты от записи); 2 - основа диска с отверстиями для приводящего механизма; 3 - защитная шторка открытой области корпуса; 4 - пластиковый корпус дискеты; 5 - антифрикционная прокладка; 6 - магнитный диск; 7 - область записи (красным условно выделен один сектор одной дорожки).


Iomega Zip

Дискета Zip-250

К середине 90-х ёмкости дискеты даже в 2,88 Мб уже было недостаточно. На смену дискете 3,5″ претендовали несколько форматов, среди которых наибольшую популярность завоевали дискеты Iomega Zip. Так же как и дискета 3,5″, носитель Iomega Zip представлял собой мягкий полимерный диск, покрытый ферромагнитным слоем и заключённый в жёсткий корпус с защитной шторкой. В отличие от 3,5″-дискеты, отверстие для магнитных головок располагалось в торце корпуса, а не на боковой поверхности. Существовали дискеты Zip на 100, 250, а к концу существования формата - и 750 Мб. Кроме бо́льшего объёма диски Zip обеспечивали более надёжное хранение данных и более высокую скорость чтения и записи, чем 3,5″. Однако они так и не смогли вытеснить трёхдюймовые дискеты из-за высокой цены как дисководов, так и дискет, а также из-за неприятной особенности приводов, когда дискета с механическим повреждением диска выводила из строя дисковод, который в свою очередь мог испортить вставленную в него после этого дискету.

Форматы

Хронология возникновения форматов дискет
Формат Год возникновения Объём в килобайтах
8″ 80
8″ 256
8″ 800
8″ двойной плотности 1000
5¼″ 110
5¼″ двойной плотности 360
5¼″ четырёхкратной плотности 720
5¼″ высокой плотности 1200
3″ 360
3″ двойной плотности 720
3½″ двойной плотности 720
2″ 720
3½″ высокой плотности 1440
3½″ расширенной плотности 2880

Следует отметить, что фактическая ёмкость дискет зависела от способа их форматирования. Поскольку, кроме самых ранних моделей, практически все флоппи-диски не содержали жёстко сформированных дорожек, дорога для экспериментов в области более эффективного использования дискеты была открыта для системных программистов. Результатом стало появление множества не совместимых между собою форматов дискет даже под одними и теми же операционными системами.

Форматы дискет в оборудовании IBM

«Стандартные» форматы дискет IBM PC различались размером диска, количеством секторов на дорожке, количеством используемых сторон (SS обозначает одностороннюю дискету, DS - двухстороннюю), а также типом (плотностью записи) дисковода - тип дисковода маркировался:

  • SD (англ. Single Density , одинарная плотность, впервые появился в IBM System 3740),
  • DD (англ. Double Density , двойная плотность, впервые появился в IBM System 34),
  • QD (англ. Quadruple Density , четверная плотность, использовался в отечественных клонах Robotron-1910 - 5¼″ дискета 720 К, Amstrad PC, ПК Нейрон - 5¼″ дискета 640 К),
  • HD (англ. High Density , высокая плотность, отличался от QD повышенным количеством секторов),
  • ED (англ. Extra High Density , сверхвысокая плотность).

В дополнительных (нестандартных) дорожках и секторах иногда размещали данные защиты от копирования проприетарных дискет. Стандартные программы, такие, как diskcopy , не переносили эти сектора при копировании.

Рабочие плотности дисководов и ёмкости дискет в килобайтах
Параметр магнитного покрытия 5¼″ 3½″
Двойная плотность (DD) Четверная плотность (QD) Высокая плотность (HD) Двойная плотность (DD) Высокая плотность (HD) Сверхвысокая плотность (ED)
Основа магнитного слоя Fe Co Co
Коэрцитивная сила , 300 300 600 600 720 750
Толщина слоя магнитного слоя , микродюйм 100 100 50 70 40 100
Ширина дорожки, мм 0,300 0,155 0,115 0,115 0,115
Плотность дорожек 48 96 96 135 135 135
Линейная плотность 5876 5876 9646 8717 17434 34868
Ёмкость
(после форматирования)
360 720 1200
(1213952)
720 1440
(1457664)
2880
Сводная таблица форматов дискет, используемых в IBM PC и совместимых ПК
Диаметр диска, ″ 5¼″ 3½″
Емкость диска, Кбайт 1200 360 320 180 160 2 880 1 440 720
Байт описания носителя в MS-DOS F9 16 FD 16 FF 16 FC 16 FE 16 F0 16 F0 16 F9 16
Количество сторон (головок) 2 2 2 1 1 2 2 2
Количество дорожек на каждой стороне 80 40 40 40 40 80 80 80
Количество секторов на дорожке 15 9 8 9 8 36 18 9
Размер сектора, байт 512
Количество секторов в кластере 1 2 2 1 1 2 1 2
Длина FAT (в секторах) 2 2 1 2 1 9 9 3
Количество FAT 2 2 2 2 2 2 2 2
Длина корневого каталога в секторах 14 7 7 4 4 15 14 7
Максимальное количество элементов в корневом каталоге 224 112 112 64 64 240 224 112
Общее количество секторов на диске 2400 720 640 360 320 5 760 2 880 1 440
Количество доступных секторов 2371 708 630 351 313 5 726 2 847 1 426
Количество доступных кластеров 2371 354 315 351 313 2 863 2 847 713

Форматы дискет в прочем зарубежном оборудовании

Дополнительную путаницу внёс тот факт, что компания Apple использовала в своих компьютерах Macintosh дисководы, применяющие иной принцип кодирования при магнитной записи, чем на IBM PC - в результате, несмотря на использование идентичных дискет, перенос информации между платформами на дискетах не был возможен до того момента, когда Apple внедрила дисководы высокой плотности SuperDrive, работавшие в обоих режимах.

Достаточно частой модификацией формата дискет 3½″ является их форматирование на 1,2 Мб (с пониженным числом секторов). Эта возможность обычно может быть включена в BIOS современных компьютеров. Такое использование 3½″ характерно для Японии и ЮАР . В качестве побочного эффекта, активация этой настройки BIOS обычно даёт возможность читать дискеты, отформатированные с использованием драйверов типа 800.

Особенности использования дискет в отечественной технике

Кроме вышеперечисленных вариаций форматов, существовал целый ряд усовершенствований и отклонений от стандартного формата дискет:

  • например, для RT-11 и её адаптированных в СССР версий количество находящихся в обороте несовместимых форматов дискеты превышало десяток. Наиболее известные - применяемые в ДВК MX, MY;
  • также известны 320/360 Кб дискеты Искра-1030/Искра-1031 - фактически представляли из себя SS/QD дискеты, но их загрузочный сектор был отмаркирован как DS/DD. В результате стандартный дисковод IBM PC не мог прочесть их без использования специальных драйверов (типа 800.com), а дисковод Искра-1030/Искра-1031 , соответственно, не мог читать стандартные дискеты DS/DD от IBM PC.

Драйвер pu_1700 позволял также обеспечивать форматирование со сдвигом и интерливингом секторов - это ускоряло операции последовательного чтения-записи, так как головка при переходе на следующий цилиндр, оказывалась перед первым сектором. При использовании обычного форматирования, когда первый сектор всегда находится за индесным отверстием (5¼″) или за зоной прохождения над герконом или датчиком Холла магнитика, закреплённого на моторе (3½″), за время шага головки начало первого сектора успевает проскочить, поэтому дисководу приходится накидывать лишний оборот.

Специальные драйверы-расширители BIOS (800, pu_1700, vformat и ряд других) позволяли форматировать дискеты с произвольным числом дорожек и секторов. Поскольку дисководы обычно поддерживали от одной до 4 дополнительных дорожек, а также позволяли, в зависимости от конструкционных особенностей, отформатировать на 1-4 сектора на дорожке больше, чем положено по стандарту, эти драйвера обеспечивали появление таких нестандартных форматов как 800 Кб (80 дорожек, 10 секторов) 840 Кб (84 дорожки, 10 секторов) и т. д. Максимальная ёмкость, устойчиво достигавшаяся таким методом на 3½″ HD-дисководах, составляла 1700 Кб. Эта техника была впоследствии использована в форматах дискет DMF Майкрософт , расширившим ёмкость дискет до 1,68 Мб за счёт форматирования дискет на 21 сектор (например, в дистрибутивах Windows 95), аналогично формату XDF фирмы IBM , который использовался в дистрибутивах OS/2 .

Сохранность информации

Одной из главных проблем, связанных с использованием дискет, была их недолговечность. Магнитный диск мог относительно легко размагнититься от воздействия металлических намагниченных поверхностей, природных магнитов, электромагнитных полей вблизи высокочастотных приборов, что делало хранение информации на дискетах достаточно ненадежным.

Наиболее уязвимым элементом конструкции дискеты был жестяной или пластиковый кожух, закрывающий собственно гибкий диск: его края могли отгибаться, что приводило к застреванию дискеты в дисководе, возвращавшая кожух в исходное положение пружина могла смещаться, в результате кожух дискеты отделялся от корпуса и больше не возвращался в исходное положение. Сам пластиковый корпус дискеты не служил достаточной защитой гибкого диска от механических повреждений (например, при падении дискеты на пол), которые выводили магнитный носитель из строя. В щели между корпусом дискеты и кожухом могла проникать пыль.

Массовое вытеснение дискет из обихода началось с появлением перезаписываемых компакт-дисков, и особенно, носителей на основе флеш-памяти , обладающих на порядки большей ёмкостью, большей скоростью обмена и бо́льшим фактическим числом циклов перезаписи и долговечностью.

Современное положение

Внешний дисковод с USB-интерфейсом

В настоящее время использование дискет практически прекращено. С 2010 года выпускается большое количество материнских плат для настольных персональных компьютеров, которые вообще не содержат разъёма для подключения дисковода. Из ноутбуков встроенные дисководы полностью исчезли ещё несколькими годами ранее.

Электронные ключи при работе с системами «Банк-клиент» , обеспечивающие электронную цифровую подпись документа, ранее распространявшиеся на дискетах, всё чаще выпускаются в виде флешки с функцией биометрической защиты.

При установке драйверов для оборудования (например, RAID -массива) во время установки современных ОС семейства MS Windows (Windows Vista , Windows Server 2008 R2 , Windows 7) также может применяться флеш-накопитель.

В случае отсутствия дисководов, подключаемых в соответствующий «классический» интерфейсный разъём на материнской плате, можно воспользоваться внешним устройством, имеющим USB - или SCSI -интерфейс.

Флоппинет

Английскому названию дискеты «флоппи-диск» обязан своим появлением неформальный термин «Флоппинет », обозначающий использование сменных носителей информации (в первую очередь, именно дискет - флоппи-дисков) для переноса файлов между компьютерами. Приставка «-нет» в ироничной форме сравнивает такой способ передачи информации с подобием компьютерной сети в то время, когда использование «настоящей» компьютерной сети по каким-либо причинам невозможно. Также иногда используется термин «дискетные сети».

Символичность

Изображение трёхдюймовой дискеты до сих пор используется в приложениях с графическим интерфейсом в качестве значка для кнопок и пунктов меню Сохранить .

Примечания

Литература

  • Воройский Ф. С. Информатика. Новый систематизированный толковый словарь-справочник. - 3-е изд. - М .: ФИЗМАТЛИТ, 2003. - 760 с. - (Введение в современные информационные и телекоммуникационные технологии в терминах и фактах). - ISBN 5-9221-0426-8

Ссылки

Относятся к устройствам для долговременного хранения данных и являются старейшими устройствами компьютера, в качестве носителя информации применяются дискеты диаметром 3,5 дюйма (объем дискеты от 1,44 MB до 2,88 MB, в зависимости от типа дисковода и дискеты).

Дисковод состоит из четырёх основных элементов: рабочий двигатель, рабочие головки, шаговые двигатели, управляющая электроника.

Рабочий двигатель. Двигатель включается только тогда, когда в дисковод вставлена дискета. Обеспечивает постоянную скорость вращения дискеты  300 об.мин. Для запуска двигателю необходимо в среднем 400 мс.

Рабочие головки. Дисковод оснащается двумя комбинированными головками (для чтения и записи каждая), которые располагаются над рабочей поверхностью дискеты. Так как обычно дискеты двухсторонние, т.е. имеют две рабочие поверхности, то одна головка предназначена для верхней, а другая головка для нижней рабочей поверхности дискеты.

Шаговые двигатели. Позиционирование головок выполняется при помощи двух двигателей. Двигатели перемещают головки над рабочей поверхностью для считывания данных.

Управляющая электроника. Электронные схемы размещаются в нижней части дисковода. Они выполняют функции передачи сигналов к контроллеру, т.е. отвечают за преобразование информации, которую считывают или записывают головки.

На данный момент дисководы морально и физически устарели, они не отвечают современным требованиям, к накопителям информации, особенно к объёму переносимой информации. Современные производители компьютеров всё реже включают дисковод в базовую комплектацию.

Жесткий диск (винчестер, Накопитель на жестких магнитных дисках)

Накопитель на жестких магнитных дисках (НЖМД) – это устройство с несменным носителем. Его конструктивная схема сходна со схемой НГМД, но реализация отличается, и существенно.

Конструкция жесткого диска (Рис.1)

Накопитель на жестких магнитных дисках состоит из четырех главных элементов, каждый из которых вносит свой вклад в его общие характеристики:

Данные хранятся на пластинах в виде концентрических дорожек, каждая из которых делится на секторы, содержащие данные (в подавляющем большинстве случаев размер сектора составляет 512 байт) и коды коррекции ошибок. Процесс такой разметки диска на сектора, состоящий в записи на его поверхность секторных меток и идентификационных номеров и называется физическим или низкоуровневым форматированием. Количество секторов на дорожке в современных дисках варьируется в зависимости от длины дорожки, т. е. на внешних дорожках секторов больше, а на внутренних меньше (так называемый метод зонно_битовой записи - zoned bit recording). Совокупность дорожек, находящихся под головками в определенном их положении на всех пластинах диска, называется цилиндром .

Пластины представляют собой диски из алюминиевого сплава или стеклообразного материала(стеклянные пластины получили в последнее время более широкое распространение), поверхность которых покрыта несколькими слоями магнитных и немагнитных материалов, защищенных сверху тонким слоем алмазоподобного графита. Размеры и ориентация частиц магнитного слоя определяют вместе с размерами зазора магнитной головки возможную плотность записи. Заметим, что поверхностная плотность записи имеет две составляющие - продольную (определяется размерами магнитных доменов, представляющих каждый бит одной дорожки) и поперечную (определяется расстоянием между соседними дорожками). Одно из последних достижений в увеличении плотности записи за счет уменьшения размеров магнитных частиц - разработанное IBM покрытие с антиферромагнитной связью (AFC, AntiFerromagnetically Coupled). Такое покрытие, неофициально называемое «пыльцой эльфов», состоит из двух магнитных слоев, «проложенных» тончайшим (его толщина составляет всего три атомных диаметра!) слоем парамагнитного металла рутения. В этом «сэндвиче» вместо одиночных магнитных доменов образуются магнитные пары с противоположно направленными векторами намагниченности, обеспечивающие повышенную стойкость к размагничиванию. Пластины укреплены на шпинделе двигателя, который вращает их с весьма высокими угловыми скоростями (до 15 тыс. об./мин).

Головка записи-чтения - ключевой элемент НЖМД. Ее чувствительность и величина магнитного зазора в большой степени определяют плотность записи накопителя. Головка «летит» над поверхностью вращающейся пластины на расстояниях порядка 10-15 нм. Расстояние от головки до магнитного слоя при этом заметно больше - до 30 нм. Защитный слой из алмазоподобного графита, наносимый на головку и пластины, обладает чрезвычайно высокими прочностью и гладкостью, так что «падение» головки на поверхность пластины в случае, например, непредвиденной остановки двигателя не приводит в современных накопителях к выходу их из строя, как это было в НЖМД первых поколений.

Позиционер (actuator) - «средство доставки» головок к нужному цилиндру диска. Понятно, что от скорости и точности его работы зависит как время доступа к данным, так и допустимое расстояние между дорожками, т. е. в конечном счете плотность записи. Кроме основных своих функций, позиционер в современных дисках служит еще и средством обеспечения надежности. Он должен вывести головки из зоны возможного соприкосновения с носителем в случае остановки основного двигателя, пропадания питания и других непредвиденных ситуаций.

Контроллер управляет всеми электронными и электромеханическими компонентами накопителя и содержит все необходимые для чтения и записи данных аналоговые и цифровые схемы. Он строится, как правило, на базе специализированного процессора, оснащенного буферной памятью для промежуточного хранения данных записи-чтения и ПЗУ или ППЗУ со встроенным программным обеспечением. Контроллер вместе с позиционером обеспечивают безопасность диска в случае пропадания питания или остановки двигателя, выводя головки из зоны возможного соприкосновения. Кроме того, контроллер обеспечивает перевод диска в режим экономии энергии при отсутствии обращений к нему в течение некоторого времени.

Дисковод - электромеханическое устройство, позволяющее осуществить чтение/запись информации на различных жёстких или гибких дисках. Для более ранних систем, которые не поддерживают загрузку с компакт-диска (спецификация El Torito), гибкие диски являются единственной возможностью загрузки операционной системы или запуска самозагружаемых диагностических средств. Более современные системы, поддерживающие спецификацию El Torito (загрузочные компакт-диски), не требуют использования накопителей на гибких магнитных дисках, так как позволяют загружать операционные системы и диагностические программы непосредственно с компакт-диска.

Дисководы Zip и LS-120 (SuperDisk), предлагаемые в качестве замены накопителей на гибких магнитных дисках в современных ПК, не имели успеха на компьютерном рынке. Новый стандарт, получивший название Mt. Rainier, позволяет использовать дисковод CD-RW вместо накопителей на гибких дисках. До появления этого стандарта накопителям CD-RW не хватало системы обработки программных ошибок, а также поддержки определенной операционной системы. Накопители на гибких магнитных дисках используются также в процессе восстановления данных, которые иногда приходится извлекать из носителей более ранних версий. В настоящее время эти компьютерные комплектующие используются редко, так как им на смену пришли более совершенные устройства.

История создания флоппи дисковода

В конце 1960-х годов Алан Шугарт изобрел накопитель на гибких дисках. В 1967 году он возглавлял команду, которая разрабатывала дисководы в лаборатории IBM. Именно здесь были созданы накопители на гибких дисках. Дэвид Нобль, один из старших инженеров, работающих под руководством Шугарта, предложил гибкий диск (прообраз дискеты диаметром 8 дюймов) и защитный кожух с тканевой прокладкой. В 1969 году Шугарт и вместе с ним более ста инженеров покинули IBM, и в 1976 году его компания Shugart Associates представила дисковод для миниатюрных (mini-floppy) гибких дисков на 5,25 дюйма, который стал стандартом, используемым в персональных компьютерах, быстро вытеснив дисководы для дисков диаметром 8 дюймов. Компания Shugart Associates также представила интерфейс Shugart Associates System Interface (SASI), который после формального одобрения комитетом ANSI в 1986 году был переименован в Small Computer System Interface (SCSI). В 1983 году Sony впервые представила компьютерному сообществу накопитель и дискету диаметром 3,5 дюйма. В 1984 году Hewlett-Packard впервые использовала в своем компьютере HP-150 этот накопитель. В этом же году Apple стала использовать накопители 3,5 дюйма в компьютерах Macintosh, а в 1986 году этот накопитель появился в компьютерных системах IBM. Алан Шугарт внес огромный вклад в индустрию персональных компьютеров. Им созданы гибкие и жесткие диски, накопитель SCSI и интерфейсы контроллеров, которые используются по сей день.

Интерфейсы флоппи дисководов

Существует несколько методов подключения накопителей на гибких магнитных дисках к компьютеру. Чаще всего используется интерфейс контроллера дисковода для гибких дисков, но в более современных системах применяется интерфейс USB. Традиционный контроллер накопителей на гибких дисках работает только внутри системы, поэтому подключение внешних накопителей обычно осуществляется с помощью шины USB или какого-либо альтернативного интерфейса. Довольно часто накопители USB или дисководы другого типа включают в себя стандартный накопитель на гибких дисках, выполненный в виде внешнего блока и содержащий интерфейсный преобразователь USB-to-floppy. В системах типа legacy-free стандартный контроллер накопителя на гибких дисках не применяется, а для подключения накопителя обычно используется шина USB. Иногда накопители подключаются с помощью шины FireWire (IEEE-1394) или параллельных интерфейсов.

Сохранность информации на флоппи дисководах

Флоппи дисководы, к сожалению не долговечны и это является их главной проблемой. Флоппи диск мог относительно легко размагнититься от воздействия металлических намагниченных поверхностей, природных магнитов, электромагнитных полей вблизи высокочастотных приборов, что делало хранение информации на дискетах ненадежным. Наиболее уязвимым элементом конструкции дискеты был жестяной или пластиковый кожух, закрывающий гибкий диск так как его края могли отгибаться, из-за чего дискета застревала в дисководе, возвращавшая кожух в исходное положение пружина могла смещаться, в результате кожух дискеты отделялся от корпуса и больше не возвращался в исходное положение. Сам пластиковый корпус дискеты не служил достаточной защитой гибкого диска от механических повреждений (например, при падении дискеты на пол), которые выводили магнитный носитель из строя. В щели между корпусом дискеты и кожухом могла проникать пыль. Массовое вытеснение дискет из обихода началось с появлением перезаписываемых компакт-дисков, и особенно, носителей на основе флеш-памяти, обладающих на порядки большей ёмкостью, большей скоростью обмена и бо?льшим фактическим числом циклов перезаписи и долговечностью.

Дискета или гибкий диск - компактное низкоскоростное малой ёмкости средство хранение и переноса информации. Различают дискеты двух размеров: 3.5”, 5.25” (8” диски широкого распространения не получили). Диски 5.25” практически вышли из употребления.

3.5” дискета 5.25” дискета

Конструктивно дискета представляет собой гибкий диск с магнитным покрытием, заключенный в футляр. Дискета имеет отверстие под шпиль привода, отверстие в футляре для доступа головок записи-чтения (в 3.5” закрыто железной шторкой), вырез или отверстие защиты от записи. Кроме того 5.25” дискета имеет индексное отверстие, а 3.5” дискета высокой плотности - отверстие указанной плотности (высокая/низкая). 5.25” дискета защищена от записи, если соответствующий вырез закрыт. 3.5” дискета наоборот - если отверстие защиты открыто. В настоящее время практически только используются 3.5” дискеты высокой плотности.

Для дискет используются следующие обозначения:

SS single side - односторонний диск (одна рабочая поверхность).

DS double side - двусторонний диск.

SD single density - одинарная плотность.

DD double density - двойная плотность.

HD high density - высокая плотность.

Накопитель на гибких дисках принципиально похож на накопитель на жестких дисках. Скорость вращения гибкого диска примерно в 10 раз медленнее, а головки касаются поверхности диска. В основном структура информации на дискете, как физическая так и логическая, такая же как на жестком диске. С точки зрения логической структуры на дискете отсутствует таблица разбиения диска.

Накопители на жестких дисках

Накопители на жестких дисках объединяют в одном корпусе носитель (носители) и устройство чтения/записи, а также, нередко, и интерфейсную часть, называемую собственно контроллером жесткого диска. Типичной конструкцией жесткого диска является исполнение в виде одного устройства - камеры, внутри которой находится один или более дисковых носителей насажанных на один шпиндель и блок головок чтения/записи с их общим приводящим механизмом. Обычно, рядом с камерой носителей и головок располагаются схемы управления головками, дисками и, часто, интерфейсная часть и/или контроллер. На интерфейсной карте устройства располагается собственно интерфейс дискового устройства, а контроллер с его интерфейсом располагается на самом устройстве. С интерфейсным адаптером схемы накопителя соединяются при помощи комплекта шлейфов.

Информация заносится на концентрические дорожки, равномерно распределенные по всему носителю. В случае большего, чем один диск, числа носителей все дорожки, находящиеся одна под другой, называются цилиндром. Операции чтения/записи производятся подряд над всеми дорожками цилиндра, после чего головки перемещаются на новую позицию.

Герметичная камера предохраняет носители не только от проникновения механических частиц пыли, но и от воздействия электромагнитных полей. Необходимо заметить, что камера не является абсолютно герметичной т.к. соединяется с окружающей атмосферой при помощи специального фильтра, уравнивающего давление внутри и снаружи камеры. Однако, воздух внутри камеры максимально очищен от пыли, т.к. малейшие частички могут привести к порче магнитного покрытия дисков и потере данных и работоспособности устройства.

Диски вращаются постоянно, а скорость вращения носителей довольно высокая (от 4500 до 10000 об/мин), что обеспечивает высокую скорость чтения/записи. По величине диаметра носителя чаще других производятся 5.25, 3.14, 2.3 дюймовые диски. На диаметр носителей несменных жестких дисков не накладывается никакого ограничения со стороны совместимости и переносимости носителя, за исключением форм-факторов корпуса ПК, поэтому, производители выбирают его согласно собственным соображениям.

В настоящее время, для позиционирования головок чтения/записи, наиболее часто, применяются шаговые и линейные двигатели механизмов позиционирования и механизмы перемещения головок в целом.

В системах с шаговым механизмом и двигателем головки перемещаются на определенную величину, соответствующую расстоянию между дорожками. Дискретность шагов зависит либо от характеристик шагового двигателя, либо задается серво-метками на диске, которые могут иметь магнитную или оптическую природу. Для считывания магнитных меток используется дополнительная серво головка, а для считывания оптических - специальные оптические датчики.

В системах с линейным приводом головки перемещаются электромагнитом, а для определения необходимого положения служат специальные сервисные сигналы, записанные на носитель при его производстве и считываемые при позиционировании головок. Во многих устройствах для серво-сигналов используется целая поверхность и специальная головка или оптический датчик. Такой способ организации серво-данных носит название выделенная запись сервосигналов. Если серво-сигналы записываются на те же дорожки, что и данные и для них выделяется специальный серво-сектор, а чтение производится теми же головками, что и чтение данных, то такой механизм называется встроенная запись сервосигналов . Выделенная запись обеспечивает более высокое быстродействие, а встроенная - повышает емкость устройства.

Линейные приводы перемещают головки значительно быстрее, чем шаговые, кроме того они позволяют производить небольшие радиальные перемещения «внутри» дорожки, давая возможность отследить центр окружности серво-дорожки. Этим достигается положение головки, наилучшее для считывания с каждой дорожки, что значительно повышает достоверность считываемых данных и исключает необходимость временных затрат на процедуры коррекции. Как правило, все устройства с линейным приводом имеют автоматический механизм парковки головок чтения/записи при отключении питания устройства.

Парковкой головок называют процесс их перемещения в безопасное положение. Это - так называемое «парковочное» положение головок в той области дисков где ложатся головки. Там, обычно, не записано никакой информации, это специальная «посадочная зона» (Landing Zone). Для фиксации привода головок в этом положении в большинстве ЖД используется маленький постоянный магнит, когда головки принимают парковочное положение - этот магнит соприкасается с основанием корпуса и удерживает позиционер головок от ненужных колебаний. При запуске накопителя схема управления линейным двигателем «отрывает» фиксатор, подавая на двигатель, позиционирующий головки, усиленный импульс тока. В ряде накопителей используются и другие способы фиксации - основанные, например, на воздушном потоке, создаваемом вращением дисков. В запаркованном состоянии накопитель можно транспортировать при достаточно плохих физических условиях (вибрация, удары, сотрясения), т.к. нет опасности повреждения поверхности носителя головками. В настоящее время на всех современных устройствах парковка головок накопителей производится автоматически внутренними схемами контроллера при отключении питания и не требует для этого никаких дополнительных программных операций, как это было с первыми моделями.

Во время работы все механические части накопителя подвергаются тепловому расширению, и расстояния между дорожками, осями шпинделя и позиционером головок чтения/записи меняется. В общем случае это никак не влияет на работу накопителя, поскольку для стабилизации используются обратные связи, однако некоторые модели время от времени выполняют рекалибровку привода головок, сопровождаемую характерным звуком, напоминающим звук при первичном старте, подстраивая систему к изменившимся расстояниям.

Плата электроники современного накопителя на жестких магнитных дисках представляет собой самостоятельный микрокомпьютер с собственным процессором, памятью, устройствами ввода/вывода и прочими традиционными атрибутами присущими компьютеру. На плате могут располагаться множество переключателей и перемычек, однако не все из них предназначены для использования пользователем. Как правило, руководства пользователя описывают назначение только перемычек, связанных с выбором логического адреса устройства и режима его работы, а для накопителей с интерфейсом SCSI - и перемычки, отвечающие за управление резисторной сборкой (стабилизирующей нагрузкой в цепи).