Самодельные часы на светодиодных матрицах. Светодиодная матрица нестандартного размера своими руками Как устроена светодиодная матрица

Преимущества светодиодов неоспоримы, сегодня они везде, в том числе и часах. Что представляют себя часы на светодиодных матрицах, о плюсах и недостатках разберем в рамках статьи. В конце статьи представлено подробное пошаговое руководство для изготовления устройства своими руками.

Что это такое

Часы на светодиодных матрицах - это электронные часы, в которых для индикации используются матрицы из множества светодиодов. Применение индикаторов другого типа - единственное их отличие.

Матрица - это набор светодиодов, собранных вместе в виде сетки с единым анодом или катодом. Как правило, разрешение таких индикаторов - количество точек по вертикали и горизонтали - 8×8.

Почему же такие часы набирают популярность, преимущества:

  1. Цена. Светодиодные матрицы дешевле семисегментных индикаторов аналогичных размеров.
  2. Яркость. Светодиоды горят ярче, чем семисегментные индикаторы, их лучше видно в местах, освещенных солнечными лучами. Многие производители также предусматривают конструктивную защиту диода от воздействия солнца.
  3. Функциональность. При помощи матрицы из светодиодов можно выводить не только цифры, но также различные буквы, знаки препинания, символы. При помощи набора LED-матриц можно выводить некоторую информацию в виде бегущей строки.

Светодиодные матрицы имеют и недостатки:

  • Увеличенная сложность управления. Из-за большого количества элементов (в стандартной матрице их 64) управлять матричными индикаторами чем семисегментными. Для этого применяются микроконтроллеры, динамическая индикация и сдвиговые регистры.
  • Угол обзора. Особенность светодиодов состоит в том, что они фокусируют свет в одном направлении. Это приводит к тому, что изображение на светодиодной матрице видно хорошо только под определенным углом.
  • Непереносимость высоких температур. Нагревание снижает эффективность светодиодов и уменьшает срок службы.
  • Перегорание отдельных светодиодов приведет к эффекту «битого пикселя» и ухудшению качества изображения.

Самодельные часы на светодиодных матрицах

Несмотря на большую популярность часов на светодиодных матрицах, в Рунете не так уж и много схем для их самостоятельного изготовления. Рассмотрим самую популярную.

Необходимые навыки для сборки устройства:

  • изготовление печатных плат;
  • пайка элементов: схема предполагает SMD-исполнение, это значит, что элементы будут устанавливаться прямо на поверхность платы;
  • прошивка микроконтроллеров: в схеме используется МК ATMega16A;
  • программирование МК: это не обязательно, поскольку для данного устройства уже имеется прошивка контроллера. Этот навык пригодится, если вы захотите изменить режим работы часов или расширить их функционал, например, добавив дополнительные элементы такие, как датчики температуры или влажности.

Из инструментов понадобятся:

  • набор для изготовления плат;
  • программатор МК;
  • паяльник.

Рассмотрим подробнее схему устройства. Главным управляющим элементом является МК ATMega16A, он обеспечивает следующие возможности прибора:

  1. Отсчет времени и календарь. Ведется даже при отключении питания.
  2. Будильник. Здесь их 9 штук, можно запрограммировать на работу по дням недели.
  3. Измерение температуры. Конструкция часов позволяет установить два датчика температуры для измерений в комнате и на улице.
  4. Режим бегущей строки. Выдает следующую информацию: день недели, месяц, год, температура.
  5. Коррекция хода часов.

Большая часть функций возложена на микроконтроллер, что позволяет максимально разгрузить схему и использовать минимальное количество элементов.

В устройстве используется лишь две микросхемы: микроконтроллер и сдвиговый регистр TPIC6B595, также можно подключить два датчика температуры DS18B20 - один уличный, и второй комнатный.

Для индикации используются три светодиодные матрицы 8×8. В качестве диода D1 лучше использовать диод Шоттки. Диод в схеме обеспечивает переход на аварийное питание, а диод Шоттки обладает наименьшим падением напряжения и высокой скоростью переключения.

Процесс изготовления:


О некоторых особенностях при сборке часов на светодиодной матрице с ATMega 16A доступно рассказывается в следующем видео.

Часы на светодиодных матрицах имеют много преимуществ перед приборами с другим типом индикации: дешевле, не засвечиваются солнцем, с их помощью можно вывести большее количество информации. Существует большое количество моделей часов на led матрицах, и каждый найдет для себя девайс с требуемым функционалом. Также такие часы несложно изготовить самому, как вы увидели из пошагового руководства выше, это не требует особенных инструментов или специальных навыков.

Сборка бегущей строки на базе светодиодной матрицы и Arduino – это несложная задача, которую можно выполнить даже в домашних условиях. Чтобы заставить буквы перемещаться на светодиодном табло не нужно быть программистом и владеть углублёнными знаниями электроники. В данной статье разберем, как собрать бегущую строку из готовых светодиодных матриц и Arduino Nano.

Что потребуется?

Для реализации идеи потребуется совсем немного деталей:

  • два светодиодных модуля, состоящих из четырёх матриц 8 на 8 пикселей;
  • держатель для батарейки типоразмера «Крона»;
  • батарейка на 9 вольт (CR-9V, ER-9V или их аналоги);
  • двухконтактный переключатель;
  • соединительные провода;
  • плата Arduino Nano;
  • термоклей.

Схема

На печатной плате используемого светодиодного модуля расположено 4 матрицы размером 8 на 8 пикселей. Каждое светодиодное табло управляется интегральной микросхемой (ИМС) MAX7219. Данная ИМС представляет собой контроллер управления led-дисплеями, матрицами с общим катодом и дискретными светодиодами в количестве до 64 шт.

Для более комфортного восприятия информации, выводимой на светодиодное табло, рекомендуется устанавливать несколько модулей. Для этого их объединяют в последовательно включенные группы, то есть выход первого модуля (out) подключают к входу второго модуля (in). Данная сборка состоит из двух модулей (16 матриц), длины которых вполне хватит для удобного прочтения целых предложений.

Сборка

Матричный модуль может иметь штырьковое соединение или контакты на плате в виде печатных проводников. От этого зависит способ их соединения. В первом случае для получения надежного электрического контакта задействуют жгут из проводков с коннекторами, а во втором придётся установить и запаять перемычки.

Но сначала необходимо объединить оба модуля в единое целое с помощью термоклея. Термопластичный клей не проводит электрический ток, а значит, его можно смело наносить на печатную плату. Клей наносят с торцов обеих плат, прижимают и оставляют на несколько минут. После затвердевания выходные контакты первого блока подключают к входным контактам второго блока по схеме:

  • VCC – VCC
  • GND – GND
  • D IN – D OUT
  • CS – CS
  • CLK – CLK

С обратной стороны печатной платы с помощью термоклея прикрепляют Arduino Nano, отсек для батарейки и выключатель. Детали располагают таким образом, чтобы можно было удобно ими пользоваться.
На следующем этапе производят подключение Arduino со светодиодным модулем, подсоединяя провода на вход первой матрицы. В зависимости от варианта исполнения модуля, операцию выполняют через разъёмное соединение или путем пайки по приведенной схеме:

  • VCC – 5V
  • GND – GND
  • D IN – PIN 11
  • CS – PIN 10
  • CLK – PIN 13.

На заключительной стадии сборки необходимо подключить питание от батарейки. Для этого минусовой контакт (черный провод) из отсека для кроны подключается на вывод GND Arduino. Плюсовой контакт (красный провод) соединяют с выключателем, а затем с выводом №30 Arduino, предназначенный для подачи питающего напряжения от нерегулируемого источника. В тестовом режиме сделанная своими руками бегущая строка может быть запитана через микро USB от компьютера.
Убедившись в надежности креплений и качестве электрических соединений, приступают к сборке корпуса. Его можно сделать из алюминиевого или пластикового профиля, так как элементы схемы не греются. Цвет, размеры, степень защиты и крепление корпуса зависят от будущего назначения устройства. В простейшем случае подойдёт защитный экран из строительного пластикового углового профиля с вырезом под выключатель.

Программирование бегущей строки

Бегущая строка из Arduino и светодиодных модулей под управлением MAX7219 практически готова. Настало время перейти к заключающей, программной части. На компьютере должно быть установлено программное обеспечение (ПО) для используемого Arduino и драйвер к нему. Далее необходимо скачать две библиотеки и скетч (специальную программу, которая будет загружаться и выполняться процессором Arduino). Установку библиотек производят при закрытом Arduino IDE в папку «Documents – Arduino – Libraries». Затем скачивают и запускают скетч и проверяют наличие библиотек и корректность других данных.

Настройка скетча:

  • «number of horizontal displays» указывают количество строк, в нашем случае 1;
  • «number of vertical displays» указывают количество матриц, в нашем случае 8;
  • «string tape» указывают надпись, выводимую на дисплей;
  • «int wait» задают скорость вывода в миллисекундах.

После проверки введенных данных остаётся щелкнуть мышкой на кнопку «загрузить». Затем отключиться от ПЭВМ, вставить батарейку и произвести запуск устройства.

В заключение хочется добавить, что бегущая строка своими руками собирается довольно быстро даже без навыков работы с Arduino. Поэтому бояться этой замысловатой платы не стоит. Также стоит отметить, что сделать бегущую строку можно длиннее, увеличив количество светодиодных матриц.

Читайте так же

!
Сегодня мы с вами будем развлекаться с адресной светодиодной матрицей. Этот проект достаточно сложный, но в тоже время его сможет повторить каждый. Автором проекта является AlexGyver.

Адресная светодиодная лента состоит из трехцветных светодиодов, в каждом из которых стоит специальная микросхема.


Микросхема в светодиодах передает информацию друг другу. Это позволяет зажечь любой светодиод на ленте одним из 16 000 000 цветов и оттенков. И самое крутое, что все это дело управляется по одному проводу, в очень интересное время мы живём.
Лента управляется при помощи микроконтроллера, например, платформы arduino .


Такая связка сама по себе весьма интересна и можно найти кучу применений в дизайне или самоделках, чего стоит только эффект пламени. Но сегодня речь пойдёт не об этом. Что получится если ленту уложить зигзагом, причем уложить так, чтобы светодиоды образовали ровную правильную сетку? Правильно, светодиодная матрица. Для удобства можно купить готовую матрицу у китайцев, причем самое интересное, что стоит она гораздо дешевле, чем купить ленту и потратить несколько часов на разрезание и соединение кусков проводами.




Например, есть вот такая матрица 8Х8, самая дешевая, кому-то будет проще поиграться именно с ней.


Фишка сегодняшнего проекта в его универсальности и многогранности, то есть, вы можете купить готовую матрицу, но она так скажем небольшая, но также вы можете купить ленту с низкой плотностью светодиодов и сделать из нее матрицу размером, скажем, с картину. Вот это будет уже круто.
Матрица представляет очень большие возможности по созданию различных пиксельных эффектов, выводу картинок и гифок (gif), созданию классических игр и других интересных штук. Обязательно посетите страницу проекта , там вы найдете все необходимые ссылки, прошивки, схемы и дополнительные инструкции.
Итак, вооружившись инструментом по управлению матрицы, мы имеем возможность зажигать любой светодиод по его координатам.


Здорово, можно делать всякие крутые эффекты. Управлять можно со смартфона по bluetooth. То есть смартфон шлет по bluetooth какие-то команды, модуль их принимает и передает на arduino. А arduino в свою очередь выводит данные на матрицу.




Начал автор с того, что решил сделать рисовалку, то есть, чтобы можно было выбрать цвет и зажечь любой светодиод на матрице.


Первым делом был разработан протокол связи с arduino.


Первая цифра в нем – режим, а остальные отвечали за различные настройки и прочие передаваемые величины. Затем автор сделал графическое поле, на котором нарисовал сетку.

Программа отслеживает координаты касания поля пальцем и рисует в этом месте квадратик любым цветом. Попутно координаты квадратика отправляются на arduino.

Для изготовления нам понадобятся:
1) Матрица или лента на адресных светодиодах;
2) Arduino;
3) Bluetooth модуль;
4) Резистор.


Можно купить полкило у китайцев, а можно купить в любом магазине радиотоваров. Соединяем компоненты по очень простой схеме:


Можно собрать все на макетке. Затем скачайте архив с проектом со страницы проекта, установите библиотеки согласно инструкции и откройте файл с прошивкой.




Тут у нас настроечки. Укажите размер своей матрицы, ее тип и точку подключения.

Если делать большую матрицу самому, то есть паять из кусков ленты, то у вас есть 2 типа на выбор.


Автор советует выбрать правый вариант, так как его проще паять. Теперь осталось определиться с началом матрицы, то есть точкой подключения к ней и направлению первого куска ленты. Поможет вот такая шпаргалка для всех 8-ми вариантов расположения матрицы:


На эту прошивку автор потратил огромнейшую кучу времени. Это самый крупный по количеству кода проект автора. Arduino забита просто под завязку, впихнул как говорится невпихуемое.


Итак, настроили, нажимаем загрузить прошивку. Перед загрузкой нужно обязательно отключить bluetooth от пина rx, иначе arduino не прошьется. Для удобства также можно припаять на провод выключатель.


Далее на смартфон под управлением android установите приложение GyverMatrixBT. Данное приложение доступно в Play Market, оно полностью бесплатное и без рекламы.


Затем установите сопряжение с bluetooth модулем (пароль 1234 или 0000), в приложении подключитесь к модулю и, собственно все. В настройках можно настроить яркость и размер матрицы, которая соответствует вашему, а также некоторые другие ее параметры.

Соответственно настроенному размеру, во вкладке рисования у нас появится поле. Нажмите чтобы его инициализировать. Тут можно рисовать тапами и свайпами, можно стирать, можно очищать поле и заливать его цветом.




В общем на данный момент у нас есть рабочий инструмент для отправки данных на матрицу. Можно двигаться дальше. Вся эта система задумывалась автором для того чтобы построить большую матрицу из ленты или модулей. Это интересно как проект, как хобби, кому-то может пригодиться в рекламных целях, для оформления или для дизайна, ну или забавы ради.

Но вот матрица в таком виде выглядит не очень круто, не пиксельно и не восьмибитно. Нужно обязательно сделать решетку, чтобы каждый светодиод образовывал свои квадратные пиксели и сверху расположить рассеиватель. Вот тогда все будет очень круто. Решетку можно сделать из любого материала в форме и рейки. Это может быть картон, пачка советских деревянных линеек или вариант из пластика (ПВХ уголок), его можно купить в магазине стройматериалов там, где пластиковые панели и к ним различные товары. Уголки можно сломать вдоль, проделать прорези для середины и собрать решетку. Это вот самый «колхозный» вариант после картона.

И конечно можно расслабиться, и напечатать решетку на 3d принтере. Так что давайте так и сделаем.






Итак, корпус матрицы напечатался. Кстати, автор считает, что черный цвет не самый лучший выбор, лучше печатать решетку белым, чтобы она отражала свет. Ну не беда, покрасим.


Собственно, вот наша матрица без решетки, светодиоды как они есть.


Ставим решетку, становится уже почетче, это потому, что смотрим под углом.


А теперь смотрите, что будет если добавить рассеиватель в виде листа бумаги.


Но матрица, как и любой дисплей, работает в цветовом пространстве rgb, и фон у нее должен быть черным для более правильного восприятия цвета. Автор попробовал несколько вариантов и остановился на пленке для

Если вам вдруг понадобилась светодиодная матрица нестандартного размера или формы, то вы всегда сможете собрать ее собственными руками. Мы рассмотрим изготовление матрицы из ультрафиолетовых диодов, создав при этом своеобразный детектор подлинности денег. Это позволит вам проверять подлинность валюты, купленной у знакомых или на улице и быть уверенным в том, что вас не обманули.

В данном видео мы предлагаем вам посмотреть процесс создания такой светодиодной матрицы.

Для работы нам необходимо подготовить следующее:
- макетная плата;
- 100 светодиодов;
- паяльник;
- 100 резисторов;
- скотч;
- кусачки;


Подготовив все необходимое, приступаем к изготовлению светодиодной матрицы с размерами 100х100 мм.

Для питания светодиодов мы будем использовать напряжение в 5 В, резисторы используем с номиналом 470 Ом, это необходимо для задания нужной величины тока в 20 мА, проходящей через каждый светодиод.


Чтобы максимально упростить задачу создания светодиодной матрицы, соединим все светодиоды параллельно. Однако, при таком соединении очень важно помнить, что каждый светодиод должен иметь свой токоограничивающий резистор.

Сначала припаиваем на плату светодиоды. Для удобства закрепляем каждую состоящую из них линию скотчем, чтобы у нас была возможность перевернуть плату и запаять сразу все линию светодиодов.

Расставляем все светодиоды на плате. Обратите внимание, что эти радиоэлементы имеют анодный и катодный выводы. Чтобы не ошибиться - более длинный вывод имеет знак «+». Закрепляем их скотчем, чтобы временно зафиксировать их на месте.


Теперь переворачиваем нашу плату, с обратной стороны которой находятся выводы всех светодиодов и начинаем их друг за другом не спеша припаивать.

После запаивания первого ряда, чтобы выводы уже припаянных светодиодов не мешали дальнейшей работе можно откусить при помощи кусачек. Скотч убираем.

После того, как все светодиоды припаяны, их выводы откусаны, начинаем расставлять резисторы. Они не имеют полярностей, поэтому не имеет значения какой стороной их ставить.

Светодиодные матрицы представляют собой технологическое объединение на одной подложке нескольких светоизлучающих полупроводниковых кристаллов, с общей заливкой смесью люминофора и силикона.

Появление LED-матриц связано с разработкой (Chip-on-Board), что дословно переводится как «чип на плате». Эта технология пришла на смену SMD светодиодам, отличается высокой степенью автоматизации производства и привела к существенному снижению цен на светодиодные светильники и прожектора.

Виды и области применения

Сохраняя единый принцип размещения светодиодных кристаллов на теплопроводящей подложке, светодиодные матрицы существенно отличаются по количеству кристаллов на одном основании и способам их соединения между собой.

Количество кристаллов на одной подложке определяет итоговую мощность матрицы, которая может достигать сотен ватт на одно изделие. Мощные матричные источники света хорошо зарекомендовали себя в прожекторах и светильниках для уличного освещения. Способ соединения кристаллов между собой определяет возможности управления свечением отдельных кристаллов и параметры блока питания для матрицы. Последовательно-параллельная структура внутренних соединений дает возможность снизить ток и увеличить величину питающего напряжения, что находит свое отражение в характеристиках матричных изделий.

Еще одной особенностью внутренних соединений кристаллов между собой с внешними выводами выступает возможность использования светодиодных матричных структур в информационных табло и в графических или символьных экранах. Такие LED-матрицы находят свое применение в контрольно-измерительной аппаратуре и всевозможных инсталляциях рекламного характера.

В устаревших моделях, для информационных табло, графических или символьных экранов, светодиодные матрицы конструировались на основе DIP или SMD-светодиодов.

Принципиальная схема

Как отмечалось выше, последовательно-параллельная схема соединения светодиодных кристаллов между собой определяет требования к источнику питания матрицы. Чем выше напряжения питания, тем больше светодиодов объединены в последовательные цепи. Такая особенность снижает требования к выходным токам драйверов, но в случае выхода из строя одного кристалла в последовательной цепи, перестает излучать свет вся цепочка. Ток перераспределяется на рабочие LED-чипы, тем самым ускоряя их деградацию и серьезно уменьшая срок службы светодиодной матрицы в целом.

Для решения проблемы, некоторые производители соединяют все светодиодные чипы внутри матрицы одновременно последовательно и параллельно. Такая особенность значительно уменьшает возможность выхода из строя LED-матрицы вследствие перегорания одного чипа. Параллельное соединение светодиодов между собой в пределах одной матричной структуры требует больших выходных токов драйвера, но общая излучающая способность практически не страдает от выхода из строя одного или двух кристаллов. Матрицы для светодиодных табло имеют в своем составе сложную систему внутренней коммутации, что определяется требованиями управления каждым светодиодом в отдельности. Для управления такими LED-матрицами созданы специальные интегральные процессоры и микросхемы.

Подключение

В схемах подключения светодиодных матриц определяющими факторами их надежности выступают два ключевых момента - достаточная площадь радиатора для отвода тепла и стабилизация питающих токов. Оба этих фактора напрямую связаны с усиленной деградацией полупроводниковых кристаллов при превышении их температур выше максимально допустимой.

К повышению температуры кристалла приводит, как недостаточная площадь радиатора охлаждения, так и слишком высокий проходящий ток.

Рабочие величины постоянного тока указываются в параметрах светодиодных матриц, а для ориентировочного выбора площади радиатора можно использовать цифру 20-25 см² на 1 Вт мощности матрицы. При это следует учитывать, что такая площадь необходима при температурах окружающего воздуха до 35 °С. При более высоких температурах рабочую площадь радиатора следует увеличить либо дополнить активным охлаждением.

При выборе светодиодных матриц со встроенным драйвером и питанием от сети 220 В необходимо учесть, что такие источники света не подходят для освещения мест постоянного пребывания человека.

Отсутствие в схеме драйвера с питанием от сети 220 вольт электролитических конденсаторов большой емкости определяет высокий излучаемого света, вредное влияние которого на здоровье человека доказано множеством научных исследований.

Заключение

Совершенствование параметров светоизлучающих светодиодных кристаллов ведет к появлению все более мощных матричных структур, выходная мощность которых уже достигла 300 и более Вт.

Такая тенденция, в сочетании с повышением удельного светового потока на 1 Вт подводимой мощности, определяет дальнейшее развитие светодиодных матриц и их опережающее развитие на рынке осветительной техники.

Читайте так же