Как устроен блок питания для компьютера и из чего состоит? Устройство компьютерных блоков питания и методика их тестирования Шим в блоке питания компьютера.

Привет, друзья! Несмотря на совершенство современных комплектующих то, без чего невозможна их нормальная работа – блок питания компьютера, из чего состоит этот узел и как работает, я расскажу в сегодняшней публикации.

Из этой статьи вы узнаете:

Назначение блока питания

Даже полный «чайник» знает, что БП подает ток. Однако такое утверждение фактически почти ничего не объясняет. Блок питания выполняет три основные функции:

  • Понижает напряжение в сети от 220 В (возможны и другие значения) до рабочего напряжения, необходимого для подачи к потребителям энергии – 3.3, 5 и 12 В, в том числе и с отрицательными значениями.
  • Выпрямляет переменный ток с частотой 50 Гц, делая его постоянным.
  • Стабилизирует рабочее напряжение.

Такие функции требуют соответствующей электрической схемы. БП для системного блока – вовсе не простая конструкция, как можно ошибочно подумать. Рассмотрим более детально его строение – какие логические блоки спрятаны там внутри, и как работает каждый из них.

Конструкционные компоненты

В состав блока питания включены три каскада – входной, выходной и преобразователь. Следует разобрать более детально, как устроен каждый и для чего он предназначен.

Входные цепи

Сюда входят такие блоки:

  • Входной фильтр, который отсекает импульсные помехи, не давая им распространяться далее. Также он снижает разряд конденсаторов, который возникает при включении устройства в сеть.
  • Корректор мощности снижает нагрузку на питающие цепи.
  • Переменное напряжение постоянно трансформирует выпрямительный мост.
  • Пульсации выпрямленного напряжения сглаживает конденсаторный фильтр.

  • БП небольшой мощности, который выдает +5 В для поддержки дежурного режима материнки и +12 В для микросхемы преобразователя.

Преобразователь

Состоит из следующих элементов:

  • Двух биполярных транзисторов, которые используются в качестве полумостового преобразователя.
  • Схемы защиты от изменения питающих напряжений. В этом качестве обычно выступает специфическая микросхема, например SG6105 или UC
  • Высокочастотного импульсного трансформатора, формирующий напряжения требуемого номинала.
  • Цепей обратной связи, поддерживающих стабильное напряжение на выходе БП.
  • Формирователя напряжения, реализованного на базе отдельного операционного усилителя.

Выходные цепи

Для их нормальной работы необходимы такие составляющие:

  • Выходные выпрямители, которые используются для подачи напряжения 5 В и 12 В с положительными и отрицательными значениями, с помощью одних и тех же обмоток трансформатора.
  • Дроссель групповой стабилизации. Сглаживает импульсы и перераспределяет энергию между остальными цепями.

  • Фильтрующие конденсаторы, интегрирующие импульсы, необходимые для получения номинальных напряжений.
  • Нагрузочные резисторы, обеспечивающие безопасную работу на холостом ходу.

Достоинства такой схемы

Такая логическая схема используется уже более десятилетия, что лишний раз подтверждает ее высокую эффективность. К неоспоримым достоинствам следует отнести:

  • Относительная простота конструкции снижает количество необходимых компонентов, что позволяет снизить себестоимость устройства. Также это упрощает ремонт, в случае его необходимости.
  • На выходе получается требуемый диапазон номинальных напряжений, с приемлемым качеством стабилизации, что требуется для нормальной работы комплектующих в составе системного блока.
  • Так как основные потери энергии приходятся на процессы преобразования, можно достичь высокого КПД такого блока питания, вплоть до 90%.
  • Небольшие габариты и масса, что позволяет собирать более компактные системные блоки.
  • При внесении соответствующих конструкционных корректировок, такие БП можно использовать в сетях с широким диапазоном напряжения – например, 115 В в США или 220 В на постсоветском пространстве.

Некоторые особенности разных моделей

Эффективность устройства зависит не только от принципиальной схемы – они в большинстве случаев унифицированы, а какие-то революционные нововведения внедряются редко.

Во многом на КПД и срок эксплуатации блока питания влияет качество комплектующих, которое может отличаться у разных производителей – от откровенного контрафакта у бюджетных моделей, сделанных в полукустарных условиях, до качественных микросхем, соответствующих всем принятым стандартам, которые используются в схемах вызывающих доверие брендов.

Естественно, при покупке нового БП, ни один продавец не даст сорвать пломбу и более тщательно покопаться во внутренностях устройства.
Здесь на помощь нам приходит видеохостинг YouTube – на соответствующих каналах, которые несложно найти, блоггеры выкладывают процесс разборки и результаты тестов различных комплектующих.

Однако при этом следует прислушиваться только к мнению создателя ролика, которому вы доверяете и чья компетентность не вызывает сомнений.

Для более детального углубления в тему, советую ознакомиться с моими публикациями « » и « ».

Спасибо за внимание и до следующей встречи. Благодарю всех, кто делится моими статьями в социальных сетях.

Один из самых важных блоков персонального компьютера - это, конечно, импульсный блок питания. Для более удобного изучения работы блока есть смысл рассматривать каждый его узел по отдельности, особенно, если учесть, что все узлы импульсных блоков питания различных фирм практически одинаковые и выполняют одни и те же функции. Все блоки питания рассчитаны на подключение к однофазной сети переменного тока 110/230 вольт и частотой 50 - 60 герц. Импортные блоки на частоту 60 герц прекрасно работают и в отечественных сетях.

Основной принцип работы импульсных блоков питания заключается в выпрямлении сетевого напряжения с последующим преобразованием его в переменное высокочастотное напряжение прямоугольной формы, которое понижается трансформатором до нужных значений, выпрямляется и фильтруется.

Таким образом, основную часть схемы любого компьютерного блока питания, можно разделить на несколько узлов, которые производят определённые электрические преобразования. Перечислим эти узлы:

    Сетевой выпрямитель. Выпрямляет переменное напряжение электросети (110/230 вольт).

    Высокочастотный преобразователь (Инвертор). Преобразует постоянное напряжение, полученное от выпрямителя в высокочастотное напряжение прямоугольной формы. К высокочастотному преобразователю отнесём и силовой понижающий импульсный трансформатор. Он понижает высокочастотное переменное напряжение от преобразователя до напряжений, требуемых для питания электронных узлов компьютера.

    Узел управления. Является "мозгом" блока питания. Отвечает за генерацию импульсов управления мощным инвертором, а также контролирует правильную работу блока питания (стабилизация выходных напряжений, защита от короткого замыкания на выходе и пр.).

    Промежуточный каскад усиления. Служит для усиления сигналов от микросхемы ШИМ-контроллера и подачи их на мощные ключевые транзисторы инвертора (высокочастотного преобразователя).

    Выходные выпрямители. С помощью выпрямителя происходит выпрямление - преобразование переменного низковольного напряжения в постоянное. Здесь же происходит стабилизация и фильтрация выпрямленного напряжения.

Это основные части блока питания компьютера. Их можно найти в любом импульсном блоке питания, начиная от простейшего зарядника для сотового телефона и заканчивая мощными сварочными инверторами. Отличия заключаются лишь в элементной базе и схемотехнической реализации устройства.

Довольно упрощённо структуру и взаимосвязь электронных узлов компьютерного блока питания (формат AT) можно изобразить следующим образом.

О всех этих частях схемы будет рассказано в дальнейшем.

Рассмотрим принципиальную схему импульсного блока питания по отдельным узлам. Начнём с сетевого выпрямителя и фильтра.

Сетевой фильтр и выпрямитель.

Отсюда, собственно, и начинается блок питания. С сетевого шнура и вилки. Вилка используется, естественно, по «евростандарту» с третьим заземляющим контактом.

Следует обратить внимание, что многие недобросовестные производители в целях экономии не ставят конденсатор С2 и варистор R3, а иногда и дроссель фильтра L1. То есть посадочные места есть, и печатные дорожки тоже, а деталей нет. Ну, вот прям как здесь.

Как говорится: "No comment ".

Во время ремонта желательно довести фильтр до нужной кондиции. Резисторы R1, R4, R5 выполняют функцию разрядников для конденсаторов фильтра после того как блок отключен от сети. Термистор R2 ограничивает амплитуду тока заряда конденсаторов С4 и С5, а варистор R3 защищает блок питания от бросков сетевого напряжения.

Стоит особо рассказать о выключателе S1 ("230/115" ). При замыкании данного выключателя, блок питания способен работать от сети с напряжением 110...127 вольт. В результате выпрямитель работает по схеме с удвоением напряжения и на его выходе напряжение вдвое больше сетевого.

Если необходимо, чтобы блок питания работал от сети 220...230 вольт, то выключатель S1 размыкают. В таком случае выпрямитель работает по классической схеме диодный мост . При такой схеме включения удвоения напряжения не происходит, да это и не нужно, так как блок работает от сети 220 вольт.

В некоторых блоках питания выключатель S1 отсутствует. В других же его располагают на тыльной стенке корпуса и помечают предупреждающей надписью. Нетрудно догадаться, что если замкнуть S1 и включить блок питания в сеть 220 вольт, то это кончится плачевно. За счёт удвоения напряжения на выходе оно достигнет величины около 500 вольт, что приведёт к выходу из строя элементов схемы инвертора.

Поэтому стоит внимательнее относиться к выключателю S1. Если предполагается использование блока питания только совместно с сетью 220 вольт, то его можно вообще выпаять из схемы.

Вообще все компьютеры поступают в нашу торговую сеть уже адаптированными на родные 220 вольт. Выключатель S1 либо отсутствует, либо переключен на работу в сети 220 вольт. Но если есть возможность и желание то лучше проверить. Выходное напряжение, подаваемое на следующий каскад составляет порядка 300 вольт.

Можно повысить надёжность блока питания небольшой модернизацией. Достаточно подключить варисторы параллельно резисторам R4 и R5. Варисторы стоит подобрать на классификационное напряжение 180...220 вольт. Такое решение сможет уберечь блок питания при случайном замыкании выключателя S1 и включении блока в сеть 220 вольт. Дополнительные варисторы ограничат напряжение, а плакий предохранитель FU1 перегорит. При этом после несложного ремонта блок питания можно вернуть в строй.

Конденсаторы С1, С3 и двухобмоточный дроссель на ферритовом сердечнике L1 образуют фильтр способный защитить компьютер от помех, которые могут проникнуть по сети и одновременно этот фильтр защищает сеть от помех, создаваемых компьютером.

Возможные неисправности сетевого выпрямителя и фильтра.

Характерные неисправности выпрямителя, это выход из строя одного из диодов "моста" (редко), хотя бывают случаи, когда выгорает весь диодный мост, или утечка электролитических конденсаторов (гораздо чаще). Внешне это характеризуется вздутием корпуса и утечкой электролита. Подтёки очень хорошо заметны. При пробое хотя бы одного из диодов выпрямительного моста, как правило, перегорает плавкий предохранитель FU1.

При ремонте цепей сетевого выпрямителя и фильтра имейте в виду то, что эти цепи находятся под высоким напряжением, опасным для жизни ! Соблюдайте технику электробезопасности и не забывайте принудительно разряжать высоковольные электролитические конденсаторы фильтра перед проведением работ!

Устройство блока питания стационарных компьютеров подразумевает использование метода импульсной стабилизации напряжения . Подаваемое напряжение бытовой электросети составляет 110/230 В с частотой 50-60 Гц на входе, а на выходе имеется ряд линий постоянного тока, где для основных линий номиналом считаются 2,5 и 3,3 В. Блок питания способен обеспечить напряжение в 12В и 5В в случае использования шины ISA. Напряжение в 5В было исключено из стандарта АТХ из-за прекращения поддержки ISA-шины.

Устройство компьютерного блока питания.

Отталкиваясь от указанной выше упрощенной схемы стандартного импульсного блока питания , можно выделить четыре основных этапа:

  1. фильтр ЭМП - электромагнитных помех (RFI filter);
  2. первичная цепь - входной выпрямитель (rectifier), ключевые транзисторы (switcher), создающие переменный ток высокой частоты на первичной обмотке трансформатора;
  3. основной трансформатор;
  4. вторичная цепь - выпрямители тока со вторичной обмотки трансформатора (rectifiers), сглаживающие фильтры на выходе (filtering).

Устройство блока питания компьютера. Фильтр ЭМП.

Устройство блока питания компьютера включает в себя фильтр ЭМП - это входной фильтр блока питания подавляет два типа электромагнитных помех: синфазных (common-mode) и дифференциальных (differential-mode). Для первого типа характерно течение тока в одном направлении, а во втором случае ток течет в разных направлениях.

Дифференциальные помехи подавляются с помощью включенного параллельно нагрузке конденсатора СХ, представляющий собой пленочный конденсатор. Иногда на провода вешают дроссель, выполняющий ту же функцию.

Устройство блока питания также в себя включает конденсаторы CY, которые образуют фильтр синфазных помех. Они соединяют линии питания в общей точке с землей и так называемым синфазным дросселем (LF1 на схеме), в обмотках которого ток течет в одном направлении, тем самым создавая сопротивление для таких помех.

Дешевые модели блоков питания оснащают минимальным набором деталей фильтра, а дорогие имеют повторяющиеся звенья. В прошлом фильтр ЭМП и вовсе не входил в устройство блока питания. Даже сейчас можно встретить дешевый блок питания без фильтра, но такие курьезные случаи за годы значительно уменьшились. Являясь мощным источником помех, такой блок питания будет негативно влиять на включенную в бытовую сеть технику.

Устройство блока питания хорошего качества включает в себя детали, защищающие владельца или сам блок питания от повреждений. Как правило, используется плавкий предохранитель, защищающий от короткого замыкания (F1). При срабатывании предохранителя, блок питания перестанет быть защищаемым объектом. В случае короткого замыкания пробивает ключевые транзисторы, поэтому необходимо предотвратить возгорание электропроводки. Сгоревший предохранитель будет уже бессмысленно менять заменять.

Для защиты от кратковременных скачков напряжения используется варистор (MOV - Metal Oxide Varistor). К сожалению, устройство блока питания не включает в себя защиту от длительного повышения напряжения, поэтому используют внешние стабилизаторы, оснащенные трансформатором внутри.

Конденсатор в цепи PFC после выпрямителя способен сохранять существенный заряд в случае отключения от питания. Для безопасности устанавливается разряжающий резистор большого номинала. Иногда в устройство блока питания интегрируется управляющая схема, не дающая заряду утекать в процессе работы устройства.

Присутствие фильтра в блоке питания для компьютера и другой компьютерной техники означает то, что покупка варисторного фильтра вместо удлинителя не имеет смысла. Они имеют одинаковую начинку. Главное условие для комфортного использования - это нормальная трехконтактная проводка с заземлением, иначе соединенные с землей конденсаторы CY просто не смогут нормально функционировать.

Блок питания обеспечивает электроэнергией все компоненты ПК. Мы расскажем о том, как работает это устройство.

Несмотря на то, что компьютер подключается к стандартной электрической розетке, его комплектующие не могут получать энергию напрямую из силовой электросети по двум причинам.

Во-первых, в сети используется переменный ток, а компьютерным компонентам необходим постоянный. Поэтому одной из задач блока питания является «выпрямление» тока.

Во-вторых, разные компоненты компьютера для работы требуют различного напряжения питания, а некоторым необходимо сразу несколько линий с разным напряжением. Блок питания обеспечивает каждое устройство током с необходимыми параметрами. Для этого в нем предусмотрено несколько линий питания. К примеру, на разъемы питания винчестеров и оптических приводов подается напряжение 5 В для электроники и 12 В для мотора.

Характеристики блока питания

Блок питания является единственным источником электроэнергии для всех компонентов ПК, поэтому от характеристик выдаваемого им тока напрямую зависит стабильность функционирования всей системы. Основной характеристикой БП является мощность. Она должна быть, по меньшей мере, равна суммарной мощности, которую потребляют комплектующие ПК при максимальной вычислительной нагрузке, а еще лучше, если она превышает этот показатель на 100 Вт и более. В противном случае компьютер будет выключаться в моменты пиковой нагрузки или, что гораздо хуже, БП сгорит, прихватив с собой «на тот свет» другие компоненты системы.

Для большинства офисных компьютеров достаточно мощности 300 Вт. Блок питания игровой машины должен иметь мощность не менее 400 Вт – высокопроизводительные процессоры и быстрые видеокарты, а также необходимые им дополнительные системы охлаждения потребляют очень много энергии. Если в компьютере несколько видеокарт, то для его питания потребуются 500- и 650-ваттные БП. В продаже уже есть модели мощностью более 1000 Вт, но покупка их практически бессмысленна.

Нередко производители БП бессовестно завышают номинальное значение мощности, чаще всего с этим сталкиваются покупатели дешевых моделей. Советуем вам выбирать блок питания, основываясь на данных тестирования. Кроме того, мощность БП легче всего определить по весу: чем он больше, тем выше вероятность того, что реальная мощность блока питания соответствует заявленной.

Помимо общей мощности блока питания, имеют значение и другие его характеристики:

Максимальная сила тока на отдельных линиях. Общая мощность БП складывается из мощностей, которые он может обеспечить на отдельных линиях питания. Если нагрузка на одну из них превысит допустимый предел, то система потеряет стабильность даже если суммарная потребляемая мощность будет далека от номинала блока питания. Нагрузка на линии в современных системах, как правило, неравномерна. Тяжелее всех приходится 12-вольтовому каналу, особенно в конфигурациях с мощными видеокартами.

Габариты. При указании габаритов БП производители, как правило, ограничиваются обозначением форм-фактора (современный ATX, устаревший AT или экзотический BTX). Но производители компьютерных корпусов и блоков питания не всегда строго придерживаются нормы. Поэтому при покупке нового блока питания советуем сравнивать его габариты с размерами «посадочного места» в корпусе вашего ПК.

Разъемы и длина кабелей. Разъемов Molex у блока питания должно быть не меньше шести штук. В компьютере с двумя жесткими дисками и парой оптических приводов (например, пишущим DVD-RW и DVD-«читалкой») уже задействованы четыре такие разъема, а к Molex могут подключаться и другие устройства – например, корпусные вентиляторы и видеокарты с интерфейсом AGP.

Длина кабелей питания должна быть достаточной для того, чтобы они могли дотянуться до всех необходимых разъемов. Некоторые производители предлагают блоки питания, кабели которых не впаяны в плату, а подключаются к разъемам на корпусе. Это сокращает количество болтающихся в корпусе проводов, а следовательно – уменьшает беспорядок в системном блоке и способствует лучшей вентиляции его внутренностей, так как не создает помех циркулирующим внутри компьютера потокам воздуха.

Шум. Во время работы компоненты блока питания сильно нагреваются и требуют усиленного охлаждения. Для этого используются вентиляторы, встроенные в корпус БП, и радиаторы. Большинство блоков питания используют один вентилятор типоразмера 80 или 120 мм, а работают вентиляторы довольно шумно. Причем, чем выше мощность БП, тем более интенсивный поток воздуха требуется для того, чтобы охладить его. Для снижения уровня шума в качественных блоках питания используются схемы контроля скорости вращения вентиляторов в соответствии с температурой внутри БП.

Некоторые блоки питания позволяют пользователю самому определять скорость вращения вентилятора с помощью регулятора на задней стенке БП.

Существуют такие модели БП, которые продолжают вентилировать системный блок некоторое время после выключения компьютера. Благодаря этому компоненты ПК быстрее остывают после работы.

Наличие тумблера. Выключатель на задней стенке блока питания позволяет полностью обесточить систему, если возникает необходимость вскрыть корпус компьютера, поэтому его наличие приветствуется.


Дополнительные характеристики блока питания

Высокая мощность блока питания сама по себе не гарантирует качественной работы. Помимо нее, имеют значение и другие электрические параметры.

Коэффициент полезного действия (КПД). Этот показатель говорит о том, какая доля потребляемой блоком питания энергии из электрической сети достается комплектующим компьютера. Чем ниже КПД, тем больше энергии тратится на бесполезное выделение тепла. К примеру, если КПД составляет 60%, то 40% энергии из розетки теряется. Это повышает расход электроэнергии и приводит к сильному нагреву компонентов БП, а следвательно – к необходимости усиленного охлаждения с помощью шумного вентилятора.

Хорошие блоки питания имеют КПД, равный 80% и выше. Их можно узнать по знаку «80 Plus». С недавних пор действуют три новых более строгих стандарта: 80 Plus Bronze (КПД не ниже 82%), 80 Plus Silver (от 85%) и 80 Plus Gold (от 88%).

Значительно поднять КПД блока питания позволяет модуль PFC (Power Factor Correction). Он бывает двух видов: пассивный и активный. Последний гораздо эффективнее и позволяет добиваться уровня КПД до 98%, для БП с пассивным PFC характерен КПД на уровне 75%.

Стабильность напряжения. Напряжение на линиях блока питания колеблется в зависимости от нагрузки, но при этом оно не должно выходить из определенных границ. В противном случае возможны сбои в работе системы или даже выход из строя отдельных ее компонентов. Надеяться на стабильность напряжения позволяет в первую очередь мощность блока питания.

Безопасность. Качественные блоки питания оснащаются различными системами для защиты от скачков напряжения, перегрузки, перегрева и короткого замыкания. Эти функции защищают не только блок питания, но и другие компоненты компьютера. Заметим, что наличие таких систем в блоке питания не исключает необходимости использования источников бесперебойного питания и сетевых фильтров.

Основные характеристики блока питания

На каждом блоке питания есть наклейка с указанием его технических характеристик. Основным параметром является так называемая Com­bined Power или Combined Wattage. Это предельная совокупная мощность по всем существующим линиям питания. Кроме того, имеет значение предельная мощность и по отдельным линиям. Если на какой-то линии для того, чтобы «прокормить» подключенные к ней устройства, не хватает мощности, то эти компоненты могут работать нестабильно, даже если общей мощности БП вполне достаточно. Как правило, не на всех блоках питания указывается предельная мощность по отдельным линиям, но на всех обозначена сила тока. С помощью этого параметра легко рассчитать мощность: для этого надо умножить силу тока на напряжение в соответствующей линии.

12 В. 12 вольт подается, прежде всего, на мощные потребители электроэнергии – видеокарту и центральный процессор. Блок питания должен обеспечивать на этой линии как можно большую мощность. К примеру, 12-вольтовая линия БП рассчитана на силу тока 20 А. При напряжении 12 В это соответствует мощности в 240 Вт. Высокопроизводительные видеокарты могут развивать мощность до 200 Вт и выше. Питание на них подается через две 12-вольтовые линии.

5 В. Линии с напряжением 5 В снабжают питанием материнскую плату, жесткие диски и оптические приводы ПК.

3,3 В. Линии на 3,3 В идут только на материнскую плату и обеспечивают питанием оперативную память.

Блок питания наиболее подвержен влиянию внешних факторов и в тоже время на его работу могут повлиять элементы являющиеся его нагрузкой. Главное назначение блоков питания преобразование электрической энергии поступающей из сети переменного тока в энергию пригодную для питания узлов компьютера. Блок питания преобразует сетевое переменное напряжение 220 В 50 Гц 120 В 60 Гц в постоянные напряжения 5 12 и в 33 В.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Назначение и принципы работы блоков питания

Блок питания является одним из самых ненадежных устройств компьютерной системы, т.к. в его составе имеются электронные, электрические и электромеханические элементы. Блок питания наиболее подвержен влиянию внешних факторов и в тоже время на его работу могут повлиять элементы являющиеся его нагрузкой.

Главное назначение блоков питания — преобразование электрической энергии, поступающей из сети переменного тока, в энергию, пригодную для питания узлов компьютера. Блок питания преобразует сетевое переменное напряжение 220 В, 50 Гц (120 В, 60 Гц) в постоянные напряжения +5, +12 и в +3,3 В. Как правило, для питания цифровых схем (системной платы, плат адаптеров и дисковых накопителей) используется напряжение +3,3 или +5 В, а для двигателей (дисководов и различных вентиляторов) — +12 В. Компьютер работает надежно только в том случае, если значения напряжения в этих цепях не выходят за установленные пределы.

Замечание Когда фирма Intel начала выпускать процессоры, для которых требовалось напряжение 3,3 В, источников питания с таким выходным напряжением еще не было. Поэтому изготовители системных плат начали встраивать трансформаторы, преобразующие напряжение +5 в 3,3 В. Такие преобразователи генерируют большое количество теплоты, что нежелательно для персонального компьютера.

Сигнальные функции

Блок питания также вырабатывает и отрицательные напряжения -5 и -12В. Питание -5 В поступает на контакт В5 шины I SA (при ее наличии), а на самой системной плате оно не используется. Это напряжение предназначалось для питания аналоговых схем в старых контроллерах накопителей на гибких дисках, поэтому оно и подведено к шине. В современных контроллерах напряжение -5 В не используется; оно сохраняется лишь как часть стандарта шины ISA.

Блок питания в системе с шиной МСА (Micro Channel Architecture ), a также в блоки питания SFX не имеют сигнала -5 В. В подобных системах это напряжение не используется, поскольку в них всегда устанавливаются новейшие контроллеры дисководов.

Напряжения +12 и -12 В на системной плате также не используются, а соответствующие цепи подключены к контактам В9 и В7 шины ISA . К ним могут подсоединяться схемы любых плат адаптеров, но чаще всего подключаются передатчики и приемники последовательных портов. Если последовательные порты смонтированы на самой системной плате, то для их питания могут использоваться напряжения -12 и +12 В.

Замечание Нагрузка источников питания для схемы последовательных портов весьма незначительна. Например, работающий одновременно на два порта сдвоенный асинхронный адаптер компьютеров PS/2 для выполнения операций с портами потребляет всего 35 мА, как по цепи +12, так и -12 В.

В большинстве схем современных последовательных портов указанные напряжения не используются. Для их питания достаточно напряжения +5 В (или даже 3,3 В). Если в компьютере установлены именно такие порты, значит, сигнал +12 В от блока питания не подается.

Напряжение +12 В предназначено в основном для питания двигателей дисковых накопителей. Источник питания по этой цепи должен обеспечивать большой выходной ток, особенно в компьютерах с множеством отсеков для дисководов. Напряжение 12 В подается также на вентиляторы, которые, как правило, работают постоянно. Обычно двигатель вентилятора потребляет от 100 до 250 мА, но в новых компьютерах это значение ниже 100 мА. В большинстве компьютеров вентиляторы работают от источника +12 В, но в портативных моделях для них используется напряжение +5 В (или даже 3,3 В).

Блок питания не только вырабатывает необходимое для работы узлов компьютера напряжение, но и приостанавливает функционирование системы до тех пор, пока величина этого напряжения не достигнет значения, достаточного для нормальной работы. Иными словами, блок питания не позволит компьютеру работать при "нештатном" уровне напряжения питания. В каждом блоке питания перед получением разрешения на запуск системы выполняется внутренняя проверка и тестирование выходного напряжения. После этого на системную плату посылается специальный сигнал Power _ Good (питание в норме). Если такой сигнал не поступил, компьютер работать не будет. Напряжение сети может оказаться слишком высоким (или низким) для нормальной работы блока питания, и он может перегреться. В любом случае сигнал Power _ Good исчезнет, что приведет либо к перезапуску, либо к полному отключению системы. Если ваш компьютер не подает признаков жизни при включении, но вентиляторы и двигатели накопителей работают, то, возможно, отсутствует сигнал Power _ Good . Столь радикальный способ защиты был предусмотрен фирмой IBM , исходя из тех соображений, что при перегрузке или перегреве блока питания его выходные напряжения могут выйти за допустимые пределы и работать на таком компьютере будет невозможно.

Замечание Иногда сигнал Р ower _ Good используется для сброса вручную. Он подается на микросхему тактового генератора (8284 или 82284 в компьютерах PC/XT и AT ). Эта микросхема управляет формированием тактовых импульсов и вырабатывает сигнал начальной перезагрузки. Если сигнальную цепь Power _ Good заземлить каким-либо переключателем, то генерация тактовых сигналов прекращается и процессор останавливается. После размыкания переключателя вырабатывается кратковременный сигнал начальной установки процессора и разрешается нормальное прохождение сигнала Р ower _ Good

В компьютерах с более новыми формфакторами системной платы, типа micr о АТХ и NLX , предусмотрен другой специальный сигнал. Этот сигнал, называемый PS _ ON и используется для программного отключения источника питания (и, таким образом компьютера). Сигнал PS _ ON используется операционной системой (например, Windows которая поддерживает расширенное управления питанием (Advanced Power Management - APM ). Когда выбираеся команду Завершение работы из главного меню, Windows полностью автоматически отключает источник питания компьютера. Система, не обладающая этой особенностью, только отображает сообщение о том, что можно выключить компьютер.

Конструктивные размеры блоков питания

Размеры блока питания и расположение его элементов характеризуются конструктивными размерами, или формфакторами. Характеристики формфакторов также распростроняются на корпуса системных блоков и системные платы. Узлы одинаковых конструктивных размеров взаимозаменяемы. Проектируя компьютер, разработчики обычно выбирают одинаковые формфакторы всех компонентов PC . При разработке оригинальной конструкции блок питания получится уникальным, т.е. пригодным только для конкретной системы. Используемый в PC источник питания, в отличие от других типов источников, высокоэффективен, генерирует минимальное количество теплоты, имеет небольшой размер и низкую цену.

Замечание Даже если два источника питания имеют один и тот же формфактор, они могут значительно отличаться качеством и эффективностью (КПД). Практически все новые блоки питания несовместимы с прежними моделями. Например, в блоках питания для систем АТХ используются абсолютно новые сигналы PS _ ON .

Размер блока питания определяется конструкцией корпуса. Промышленными стандартами можно считать представленные ниже модели корпусов и блоков питания.

Устаревшие

Современные

PC / XT

LPX (Slimline)

AT/Desktop

АТХ

AT/Tower

В aby-AT

Существует множество модификаций блоков питания каждого типа, которые различают по выходным мощностям. В настоящее время практически во всех новых компьютерах и c пользуется формфактор АТХ. Ниже представлено соответствие между формфакторами си c темных плат и блоков питания.

формфактор системной платы

Чаше всего используемый формфактор блока питания

Другие используемые формфакторы блока питания

В aby-AT

В aby-AT, AT-Tower, AT-Desk

АТХ

АТХ

Micro- АТХ

АТХ

АТХ

Стандарт АТ

Блок питания PC АТ обычно имел стандартный конструктив и набор жгутов (кабелей) с разъемами питания для соединения с системной платой и периферийными устройствами. На задней стенке блока устанавливается входной разъем питающего кабеля, а также может быть установлен транзитный выходной разъем для питания монитора. Подключение монитора к такому разъему не только сокращает количество вилок, включаемых в розетку питания, но и обеспечивает связь «земель» монитора и системного блока. В некоторых типах блоков питания транзитный разъем может отсутствовать. При этом монитор включают в дополнительную розетку и хорошо, если при этом соблюдают правила заземления.

Блок вырабатывает основное стабилизированное напряжение +5 В при токе 10-50 А; +12 В при токе 3,5-15 А для питания двигателей устройств и интерфейсных цепей; -12 В при токе 0,3-1 А для питания интерфейсных цепей; -5 В при токе 0,3-0,5 А (обычно не используется, присутствует только для соблюдения стандарта ISA Bus ). Уровни напряжений 12 В, -12 В, -5 В обычно пропорциональны нагрузке цепи +5 В. Для регулировки выходного напряжения обычно имеется подстроечный резистор, хотя та доступа к нему может потребоваться и разборка блока питания.

Выходные цепи блоков питания формата AT выводятся гибкими жгутами проводов со стандартным набором разъемов (рис. 9). Разъемы для питания накопителей имеют ключи, исключающие возможность неправильного соединения. Однако иногда встречаются блоки с ошибочно собранными разъемами, в результате чего на шину питания +5 В попадает +12 В, чего устройства, как правило, не выдерживают. Традиционные разъемы питания системной платы PS -8, PS -9 всегда устанавливаются рядом так, чтобы четыре черных провода GND шли подряд. Их ключи весьма условны, а ошибка подключения чревата выгоранием системной платы. Цвета проводов в жгутах стандартизованы:

GND - черный;

12 V — коричневый;

5 V — красный;

5 V — голубой;

12 V — желтый;

P . G . — белый (питание в норме).

К системной плате К накопителям

Рис. 9. Выходные разъемы блока питания формата AT

Стандарт АТХ

Новейшим стандартом на рынке PC-совместимых компьютеров стал АТХ (рис.10 ), который определил новую конструкцию системной платы и блока питания. В его основе лежит стандарт LPX (Slimline ), но существует ряд особенностей, которые следует отметить. Версии используемых спецификаций АТХ постоянно совершенствуются и модифицируются .

Блок питания в стандарте АТХ значительно отличается от традиционных как по габаритным размерам, так и по электрическому интерфейсу. Вентилятор блока питается от цепи +12 В и обеспечивает охлаждение всего системного блока.

Рис. 10. Блок питания стандарта АТХ

Главная особенность данного БП состоит в том, что вентилятор теперь расположен на стенке корпуса блока питания, которая обращена внутрь компьютера, и поток воздуха прогоняется вдоль системной платы, поступая извне. Такое решение в корне отличается от традиционного, когда вентилятор располагается на тыльной стенке корпуса блока питания и воздух выдувается наружу. Поток воздуха в блоке АТХ направляется на компоненты платы, которые выделяют больше всего тепла (процессор, модули памяти и платы расширения). Поэтому исчезает необходимость в ненадежных вентиляторах для процессора, в настоящее время получивших широкое распространение.

Другим преимуществом обратного направления воздуха является уменьшение загрязнения внутренних узлов компьютера. В корпусе создается избыточное давление, и воздух выходит в щели в корпусе, в отличие от систем другой конструкции. В АТХ-системах пыль будет «отгоняться» от устройства, поскольку внутрь воздух попадает только через одно входное отверстие на тыльной стороне блока питания. В системе, работающей в условиях повышенной запыленности, на воздухозаборнике БП можно установить фильтр, который предотвратит попадание в ПК частиц пыли.

Стандарт АТХ был разработан фирмой Intel в 1995 году и популярность завоевал после выпуска персональных компьютеров с процессором Pentium и Pentium Pro . После появления на рынке процессоров Pentium II (1997 год) и Pentium III (1999 год) этот тип корпуса стал использоваться повсеместно, заменив Baby - AT .

Конструкция АТХ (рис. 11) выполняет такие же функции, как Baby-AT и Slimline , а так-же позволяет решить две серьезные проблемы, возникающие при их использовании. Каждый из традиционных блоков питания персональных компьютеров, применяющихся в PC , имеет два разъема, которые вставляются в системную плату. Проблема такова: если вы перепутаете разъемы, то сожжете системную плату! Большинство производителей качественных систем выпускают разъемы системной платы и блока питания с ключами, чтобы их нельзя было перепутать, но почти все дешевые системы не имеют ключей ни на системной плате, ни в блоке питания.

Чтобы предотвратить неправильное подключение разъемов блока питания, в модели АТХ предусмотрен новый разъем питания для системной платы. Он содержит 20 контактов и является одиночным разъемом с ключом. Его невозможно подключить неправильно В новом разъеме предусмотрена цепь питания на 3,3 В, что позволяет отказаться от преобразователя напряжения на системной плате.

Рис. 11 . Внешний вид блока питания форм-фактора ATX / NLX

Для напряжения 3,3 В блок АТХ обеспечивает другой набор управляющих сигналов, отличающийся от обычных сигналов для стандартных блоков. Это сигналы Power _0 n и Standby (последний также называется питанием малой мощности — Soft Power , или SB ).

Power _0 n — это сигнал системной платы, который может использоваться такими операционными системами, как Windows 9 x (они поддерживают возможность выключения и пуска системы программным путем). Это также позволяет применять для включения компьютера клавиатуру. Для этого в интерфейс блока питания введен управляющий сигнал PS - ON , включающий основные источники +5, +3,3, +12, -12 и -5 В (рис. 12). Напряжение от этих источников поступает на выход блока только при удержании сигнала PS-ON на низком логическом уровне. При высоком уровне или свободном состоянии цепи выходные напряжения этих источников поддерживаются около нулевого уровня. О нормальном напряжении питания сигнализирует сигнал PW - OK (Power O " Key ). Интерфейс управления питанием позволяет выполнять программное отключение питания.

Рис. 12. Временная диаграмма интерфейса управления питанием АТХ

Сигнал 5 v _ Standby (дежурный) всегда активен и подает на системную плату питание ограниченной мощности, даже если компьютер выключен. Параметры описанных свойств устанавливаются с помощью программы установки параметров Setup BIOS . Дежурный источник с допустимым током нагрузки 10 мА (АТХ версии 2.01) включается при подаче сетевого напряжения. Он предназначен для питания цепей управления энергопотреблением и устройств, активных и в спящем режиме (например, факсмодема, способного по поступлении входящего звонка «разбудить» машину). В дальнейшем предполагается увеличить мощность данного источника до допустимого тока 720 мА, что позволит «будить» компьютер даже по приему пакета от дежурного адаптера локальной сети.

Сигнал FanM представляет собой выход типа «открытый коллектор» от тахометрического датчика вентилятора блока питания вырабатывающего два импульса на каждый оборот ротора. Сигнал FanC предназначен для управления скоростью вентилятора подачей напряжения в диапазоне 0...+12 В при токе до 20 мА. Если уровень напряжения выше +10,5 вентилятор будет работать на максимальной скорости. Уровень ниже +1 В означает запрос от системной платы на остановку вентилятора. Промежуточное значения уровня позволяют плавно регулировать скорость. Внутри блока питания сигнал FanC подтягивается к уровню +12 В, так что если дополнительный разъем оставить неподключенным, вентилятор будет всегда работать на максимальной скорости. На дополнительном разъеме также имеются koht акты 1394 V (+) и 1394 R (-) изолированного от схемной земли источника напряжения 8-48 В для питания устройств шины IEEE -1394 (FireWire ). Цепь +3.3 V Sense служит для подачи сигнала обратной связи стабилизатору напряжения +3,3

Все питающие и сигнальные провода к системной плате подключаются одним основным разъемом с надежным ключом (рис. 13а ). На разъемах подключения накопителей, естественно, сохранилось традиционное назначение контактов. Расширенная спецификация для блока питания АТХ предусматривает передачу информации от датчиков вентилятора на системную плату, что обеспечивает контроль скорости вращения и температуры воздуха. Для этих целей предназначен дополнительный (необязательный) жгут с разъемом, изображенный на рис. 13 б.

Рис. 13. а) Основной разъем питания

Рис. 13. б) Дополнительный разъем

Другая проблема, решенная в конструкции АТХ, связана с системой охлаждения. На всех современных процессорах устанавливается активный теплоотвод, который представляет собой вентилятор (кулер), который крепится к радиатору процессора для его охлаждения. Практически все процессоры, выпускаемые фирмой Intel и другими производителями, поставляются с такими вентиляторами. В системах модели АТХ для дополнительного охлаждения процессора используется заслонка рядом с блоком питания, которая направляет воздушный поток от вентилятора к процессору. Блок питания модели АТХ берет воздух извне и создает в корпусе избыточное давление, тогда как в корпусах других систем давление понижено. Направление воздушного потока в обратную сторону позволило значительно улучшить охлаждение процессора и других компонентов системы.

Замечание Метод охлаждения, описанный в технических требованиях АТХ, не является обязательным. Изготовители могут использовать другие методы, например установку традиционного выдувающего вентилятора, а также пассивных радиаторов на системной плате АТХ. Это может оказаться лучшим решением для компьютера, если не гарантируется периодическая замена фильтра источника питания.

Стандарт NLX

Технические требования NLX, также разработанные Intel , определяют низкопрофильную системную плату, во многом похожую на АТХ. Однако в этом стандарте используется меньший формфактор. Как в предыдущих системах Slimline , системная плата NLX использует выносную плату (ризер - карту) для разъемов расширения. Системная плата NLX также разработана для упрощения доступа и обслуживания; системную плату легко выдвинуть из блока. Формфактор NLX предназначен для замены LPX (как формфактор АТХ функционально заменил Baby-AT).

Технические требования NLX не определяют новый формфактор источника питания, но существует отдельный документ, в котором приведены рекомендации для источника питания NLX. Чтобы источник питания поместился в корпус NLX, он должен соответствовать размерам формфактора LPX, но в нем должны использоваться разъем с 20 контактами, сигналы напряжения, в соответствии со спецификацией АТХ (и даже вентилятор должен быть расположен как в блоке питания АТХ). Хотя иногда можно приспособить источник питания для LPX, некоторые изготовители начали производить источники питания, специально созданные для использования в системах NLX.

Стандарт SFX (системные платы micro - ATX )

Фирма Intel разработала новые технические требования для системных плат, названных micro-ATX, Эти платы предназначены для недорогих систем; в них используется меньшее количество разъемов расширения, чем в NLX, и потому требования к источнику питания менее жесткие. Поскольку документация на платы micro-ATX определяет лишь формфактор системной платы, Intel разработала технические требования для нового источника питания, названного SFX (рис. 14).

Источник питания SFX специально разработан для использования в малых системах, содержащих ограниченное количество аппаратных средств. Блок питания может в течение длительного времени обеспечивать питание при мощности 90 Вт (135 Вт пиковой мощности) в четырех напряжениях (+5, +12, -12 и +3,3 В). Этой мощности достаточно для малой системы с процессором Pentium II, интерфейсом AGP , тремя разъемами расширения и тремя периферийными устройствами типа жестких дисков и CD - ROM .

Замечание Источник питания SFX не имеет выходного напряжения -5 В, необходимого для шины ISA . Поэтому в компьютерах с платой micro-ATX используется только шина РС I и интерфейс AGP для всех плат расширений, установленных в компьютер, а разъемов шины ISA нет совсем.

Рис. 14. Блок питания стандарта SFX с вентиляторам диаметром 60 мм

Несмотря на то что Intel разработала технические требования к источнику питания SFX специально для системной платы с формфактором micro - ATX , SFX — это отдельный стандарт, который совместим с другими системными платами. В источниках питания SFX используется тот же разъем с 20 контактами, что и в стандарте АТХ, а также сигналы Power _0 n и 5 v _ Standby . Отличия проявляются в расположении вентилятора.

Если используется стандартный источник питания SFX, то вентилятор диаметром 60 мм крепится на поверхности корпуса, причем он вдувает холодный воздух внутрь корпуса компьютера. Вентилятор обдувает источник питания, и через отверстия в задней панели корпуса теплый воздух удаляется. Такое расположение вентилятора уменьшает шум, но в то же время обладает недостатками, которые были характерны для систем охлаждения до введения стандарта АТХ. В любом случае необходимо использовать дополнительные охлаждающие элементы на наиболее тепловыделяющих элементах компьютера.

Для систем, которым необходимо более интенсивное отведение тепла, был разработан блок питания с вентилятором диаметром 90 мм. Этот больший по размеру вентилятор обеспечивает лучшее охлаждение элементов компьютера (рис. 15).

Рис. 15. Блок питания стандарта SFX с вентилятором диаметром 90мм

На рис. 16 показан внешний вид блока питания стандарта SFX с верхним расположением вентилятора диаметром 90 мм.

Рис.16 . Блок питания стандарта SFX с верхним расположением вентилятора диаметром 90мм

Другие похожие работы, которые могут вас заинтересовать.вшм>

165. Разъемы блоков питания 118.6 KB
Количество разъемов для дисководов может быть разным. Например, в IBM AT имеется только три разъема питания для накопителей, а в большинстве блоков питания AT / Tower - четыре. В зависимости от используемого блока питания количество разъемов для дисководов в АТХ-системах может достигать восьми.
163. Схемотехника блоков питания 1000.31 KB
Простейший блок питания с трансформаторным входом имеет схему приведенную на рис. Трансформатор блока питания рассчитанный на частоту 60 Гц на частоте 50 Гц может ощутимо нагреваться. Блоки питания с трансформаторным входом применяются при небольшой выходной мощности чаще всего в выносных адаптерах обеспечивающих питание модемов хабов и прочих маломощных устройств внешнего исполнения.
19049. СРАВНИТЕЛЬНЫЙ АНАЛИЗ И ОЦЕНКА ЭКСПЛУАТАЦИОННЫХ ХАРАКТЕРИСТИК БЛОКОВ ПИТАНИЯ ПК 1.04 MB
Современный блок питания представляет собой импульсный блок, а не силовой. Импульсный блок содержит в себе больше электроники и имеет свои достоинства и недостатки. К достоинствам следует отнести небольшой вес и возможность непрерывного питания при падении напряжения. К недостаткам – наличие не очень продолжительного срока службы по сравнению с силовыми блоками из-за присутствия электроники.
3395. Принципы и методы санитарно-просветительной работы с населением. Особенности работы с детьми и родителями, мед. работниками 18.69 KB
Подробно разбираются особенности санпросветработы с детьми различного возраста родителями медицинскими работниками и педагогами. Студенты знакомятся с основным материальным обеспечением проведения санпросветработы на примере оборудования и оснащения типовой и приспособленных комнатах гигиены и профилактики размноженных памяток и листовок и других средств наглядной и познавательной агитации. Дифференциация должна осуществляться и при проведении санпросветработы. Однако повышение качества пропаганды позволяет усилить эффект пассивной формы...
14245. Назначение, устройство и принцип работы магнитолы 68.26 KB
Основными функциональными узлами магнитофона являются лентопротяжный механизм ЛПМ блок магнитных головок БМГ БВГ для записи воспроизведения и стирания сигналов и электронные устройства обеспечивающие работу БМГ. Характеристики ЛПМ в наибольшей степени влияют на качество звуковоспроизведения аппарата в целом потому что искажения которые неидеальный ЛПМ вносит в сигнал невозможно исправить никакой коррекцией в аналоговом электронном тракте...
1047. Основные принципы логопедической работы 971.05 KB
Поэтому так важно заботиться о своевременном формировании речи детей о ее чистоте и правильности предупреждая и исправляя различные нарушения которыми считаются любые отклонения от общепринятых норм данного языка. Логопедия как наука имеет важное теоретическое и практическое значение которое обусловлено социальной сущностью языка речи тесной связью развития речи мышления и всей психической деятельности ребенка. Значение слова уже само по себе является обобщением и в связи с этим представляет собой не только единицу речи но и...
5896. Категории, закономерности и принципы социальной работы 13.61 KB
Категории закономерности и принципы социальной работы План Категориально понятийный аппарат социальной работы Закономерности социальной работы. Принципы социальной работы.Любая гуманитарная наука в том числе теория социальной работы отражает изменчивые тесно переплетающиеся друг с другом многообразные социальные явления например взаимодействие человекчеловек человексреда обобщая и интерпретируя которые ученые выдвигают понятия – краткие но всеобъемлющие определения способные объяснить особенности того или...
7643. Основные принципы работы с базой данных в Microsoft Access 9.01 KB
Основные принципы работы с базой данных в Microsoft ccess. Что такое База данных. Проектирование базы данных. Создание базы данных.
11281. Способы, принципы и условия эффективности работы с одаренными детьми 6.17 KB
Целью построения системы выявления и развития творчески одаренных детей является предоставление им возможностей реализовывать отпущенный им природой повышенный потенциал учебных и творческих достижений. В условиях обучения не создается необходимая для развития творчески одаренного ребенка среда. Учитель адаптирует свои требования к возможностям среднего ученика выходящие за нижний предел зоны оптимального развития одаренного ученика. Для развития умственно одаренных детей необходимо расширение границ самостоятельности ребенка и поэлементное...
20010. Принципы анонсирования спортивных мероприятий, влияние системы работы по анонсированию на эффективность деятельности клуба 86.87 KB
Ориентируясь на внешнего, по отношению к отрасли в целом, и внутреннего потребителя, простого зрителя футбольного матча и медиакомпанию соответственно, инструменты спортивного маркетинга позволяют осуществлять весь комплекс продвижения как спортивных команд и спортсменов в частности, так и соответствующую продукцию. Именно поэтому тема анонсирования спортивных мероприятий и влияние системы работы по анонсированию на эффективность деятельности клуба является актуальной и своевременной.