Открытый урок по физике полупроводники. Полупроводниковые материалы

Физические свойства полупроводников Полупроводники́ материалы, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками. Основным свойством этих материалов является увеличение электрической проводимости с ростом температуры. Хорошо проводят электрический ток К ним относятся металлы, электролиты, плазма … Наиболее используемые проводники – Au, Ag, Cu, Al, Fe … Хорошо проводят электрический ток К ним относятся металлы, электролиты, плазма … Наиболее используемые проводники – Au, Ag, Cu, Al, Fe … Практически не проводят электрический ток К ним относятся пластмассы, резина, стекло, фарфор, сухое дерево, бумага … Практически не проводят электрический ток К ним относятся пластмассы, резина, стекло, фарфор, сухое дерево, бумага … Занимают по проводимости промежуточное положение между проводниками и диэлектриками Si, Ge, Se, In, As Занимают по проводимости промежуточное положение между проводниками и диэлектриками Si, Ge, Se, In, As




Физические свойства полупроводников R (Ом) t (0 C) R0R0 металл полупроводник Проводимость полупроводников зависит от температуры. В отличие от проводников, сопротивление которых возрастает с ростом температуры, сопротивление полупроводников при нагревании уменьшается. Вблизи абсолютного нуля полупроводники имеют свойства диэлектриков.


Электрический ток в полупроводниках Полупроводниками называют вещества, удельное сопротивление которых убывает с повышением температуры К полупроводникам относятся кремний, германий, селен и др. Связь между атомами – парно электронная, или ковалентная При низких температурах связи не разрываются




Собственная проводимость полупроводников При обычных условиях (невысоких температурах) в полупроводниках отсутствуют свободные заряженные частицы, поэтому полупроводник не проводит электрический ток. Si


«Дырка» При нагревании кинетическая энергия электронов увеличивается и самые быстрые из них покидают свою орбиту. Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. В этом месте образуется условный положительный заряд, называемый «дыркой». Si дырка + + свободный электрон


Примесная проводимость полупроводников Дозированное введение в чистый проводник примесей позволяет целенаправленно изменять его проводимость. Поэтому для увеличение проводимости в чистые полупроводники внедряют примеси, которые бывают донорные и акцепторные Примеси Акцепторные Донорные Полупроводники p-типа Полупроводники p-типа Полупроводники n-типа Полупроводники n-типа


Дырочные полупроводники (р-типа) In + Si Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.индия


Электронные полупроводники (n-типа) As Si Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.


Донорные примеси - это примеси, отдающие лишний валентный электрон Полупроводники с донорными примесями обладают электронной проводимостью и называются полупроводниками n–типа. Акцепторные примеси – это примеси, у которых не достает электронов для образования полной ковалентной связи с соседними атомами. Полупроводники с акцепторными примесями обладают дырочной проводимостью и называются полупроводниками p-типа.


Собственная проводимость полупроводников Валентный электрон соседнего атома, притягиваясь к дырке, может перескочить в нее (рекомбинировать). При этом на его прежнем месте образуется новая «дырка», которая затем может аналогично перемещаться по кристаллу.


Собственная проводимость полупроводников Если напряженность электрического поля в образце равна нулю, то движение освободившихся электронов и «дырок» происходит беспорядочно и поэтому не создаёт электрического тока. Под воздействием электрического поля электроны и дырки начинают упорядоченное (встречное) движение, образуя электрический ток. Проводимость при этих условиях называют собственной проводимостью полупроводников. При этом движение электронов создаёт электронную проводимость, а движение дырок – дырочную проводимость.


Диод Полупроводниковый диод полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n-перехода. Впервые диод изобрел Джон Флемминг в 1904 году.


Типы и применение диодов Диоды применяются в: преобразовании переменного тока в постоянный детектировании электрических сигналов защите разных устройств от неправильной полярности включения коммутации высокочастотных сигналов стабилизации тока и напряжения передачи и приеме сигналов Транзистор Электронный прибор из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналам управлять током в электрической цепи. Обычно используется для усиления, генерирования и преобразования электрических сигналов. В 1947 году Уильям Шокли, Джон Бардин и Уолтер Браттейн в лабораториях Bell Labs впервые создали действующий биполярный транзистор.

ПЛАН-КОНСПЕКТ УРОКА

Раздел 2 Тема 2.5 Полупроводниковые приборы

(Тема урока)

ФИО (полностью)

Дилигенская Юлия Владимировна

Место работы

БПОУ ВО «Череповецкий лесомеханический техникум им. В.П. Чкалова»

Должность

Преподаватель

Профессиональный модуль ПМ 01. Организация технического обслуживания и ремонта электрического и электромеханического оборудования

МДК 01.05 Типовые электрические схемы и функциональные узлы электронных и вычислительных устройств

ЭЛЕМЕНТЫ ЭЛЕКТРОННЫХ СХЕМ

  1. Литература

Основная

1.Тугов Н. М. , Глебов Б.А., Чарыков Н.А.Полупроводниковые приборы- М.: Издательский центр «Академия,» 2004.-240 с

2.Миклашевский С.П., Промышленные элементы электронных схем. М: Высшая школа, 2006- 214 с.

Справочная

1.Диоды, транзисторы, оптоэлектронные приборы: Справочник , М.: Издательский центр «Академия,» 2005

2. Дидактический материал по общей электротехнике с основами электроники, Учебное пособие- М: Высшая школа. 2006 – 108 с

5.Цель урока:

Ознакомить обучающихся с разновидностями полупроводниковых приборов;

Дать представление о функциональном назначении каждого прибора;

Показать практическое значение полупроводниковых приборов в специальности.

6. Задачи:

- обучающие

помочь студентам изучить классификацию полупроводниковых приборов;.

-развивающие

развивать познавательный интерес студентов.

-воспитательные

воспитать информационную культуру студентов.

7.Тип урока – усвоения новых знаний

8.Формы работы учащихся – индивидуальная и групповая.

9.Необходимое техническое оборудование – мультимедийный компьютер преподавателя, видеопроектор,

    Структура и ход урока

Таблица 1.

ТЕХНОЛОГИЧЕСКАЯ КАРТА УРОКА

Этап урока

Название используемых ЭОР

(с указанием порядкового номера из Таблицы 2)

Деятельность преподавателя

Деятельность студента

Время

(в мин.)

Организационно-мотивационный

1. Схема устройства компьютера

Приветствует студентов. Проверяет подготовку учащихся к уроку и выполнение домашнего задания.

Формулирует тему урока и раскрывает цели урока.

Задает вопросы, мотивирующие учащихся на изучение новой темы:

    Какие виды электронных схем вы знаете?

    Какие типы полупроводниковых приборов вам известны?

    Перечислите характеристики полупроводниковых материалов?

Обобщает ответы студентов, переходя к основной части урока.

Приветствуют преподавателя демонстрируют домашнюю работу в тетрадях.

Слушают и осмысливаю цели занятия, записывают дату и тему урока в тетрадях

Отвечают на поставленные вопросы.

Анализируют представленную на слайде информацию.

Основная часть:

Этап передачи новых знаний

2. Основные устройства полупроводниковых приборов

3. Характеристики диодов

4.Характеристики транзисторов

5. Характеристики микросхем

Лекция. (Демонстрация интерактивной презентации)

Обращает внимание на различие назначения и характеристик полупроводниковых приборов, используя видеофрагмент.

Указывает на конструкцию полупроводниковых приборов, выведя на экран схему, отражающую основные функциональные компоненты. полупроводниковых приборов

Рассказывает о каждом

полупроводниковом приборе

1) Диоды

Обращает внимание на то, что в основе свойств полупроводниковых материалов лежат общие принципы работы приборов

2) Транзисторы.

3)Микросхемы.

Слушают объяснение нового материала, делают записи в тетрадях.

Осмысливают новую информацию.

Изучают представленную схему, задают вопросы.

Чертят схемы в тетрадях.

Обсуждают, представленную на слайде информацию, демонстрируют свои знания из дисциплины « Физика» по характеристикам полупроводниковых приборов

Этап усвоения новых знаний

7 .Применение полупроводниковых приборов в специальности

Предлагает самостоятельно изучить понятие и назначение:

4) Полевые транзисторы в коммутационной аппаратуре.

Работа с учебником, выполнение записей в тетрадях. После изучения данного материала уясняют не понятные моменты.

Закрепления нового материала

Группа разбивается на бригады. Преподаватель каждой бригаде раздает карточки с ключевыми словами, которые надо дополнить терминами, по теме урока

Проверяет правильность выполнения задания

Каждая бригада работает над заданием, стараясь справиться с ним первой.

Подведения итогов урока

Оценивает деятельность студентов. Подводит общий итог урока.

Задает домашнее задание.

Благодарит студентов за урок.

Слушают и осмысливают итоги урока. Записывают домашнее задание в дневниках. Выражают отношение к уроку.

Объясняет особенности.

Полупроводники — вещества, способные, как проводить электрический ток, так и препятствовать его прохождению. Это большая группа веществ, применяемых в радиотехнике (германий, кремний, селен, а так же всевозможные сплавы и химические соединения н-р окись меди). Почти все вещества окружающего нас мира являются полупроводниками. Самым распространенным в природе полупроводником является кремний, составляющий по приблизительным подсчетам почти 30 % земной коры. Для изготовления полупроводниковых приборов используют в основном только кремний и германий. (найдите их в таблице Д. И. Менделеева — Приложение 2). Какую валентность они имеют (в таблице Д. И. Менделеева найдите номер столбца в котором они находятся)?

По своим электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками электрического тока. Запишите в тетрадь определение что такое полупроводник.

Рассмотрим следующие три опыта (демонстрация или плакаты)

Первый опыт: Нагревание полупроводника


Посмотрите, что происходит при увеличении температуры? Сопротивление будет уменьшаться при увеличении температуры?

Какой вывод можно сделать?

Электропроводность полупроводников сильно зависит от окружающей температуры. При очень низкой температуре, близкой к абсолютному нулю (-273), полупроводники не проводят электрический ток, а с повышением температуры, их сопротивляемость току уменьшается. На основе этого были созданы термоэлектрические приборы.

Термисторы. В полупроводниках электрическое сопротивление очень сильно зависит от температуры. Это свойство используют для измерения температуры по силе тока в цепи с полупроводником. Такие приборы называют термисторами или терморезисторами.

Термисторы — одни из самых простых полупроводниковых приборов. Выпускают термисторы в виде стержней, трубок, дисков, шайб и бусинок размером от нескольких микрометров до нескольких сантиметров.

Диапазон измеряемых температур большинства термисторов лежит в интервале от 170 до 570 К. Но существуют термисторы для измерения как очень высоких (примерно 1300 К), так и очень низких (примерно 4 — 80 К) температур. Термисторы применяются для дистанционного измерения температуры, противопожарной сигнализации и т. д.

Второй опыт: Освещение светом полупроводника



Посмотрите, что происходит при увеличении освещенности?

Какой вывод можно сделать?

Если на полупроводник навести свет, то его электропроводность начинает увеличиваться. Используя это свойство полупроводников были созданы фотоэлектрические приборы. Также полупроводники способны преобразовывать энергию света в электрический ток, например, солнечные батареи.

Фоторезисторы. Электрическая проводимость полупроводников овышается не только при нагревании, но и при освещении.

Можно заметить, что при освещении полупроводника сила тока в цепи заметно возрастает. Это указывает на увеличение проводимости (уменьшение сопротивления) полупроводников под действием света. Данный эффект не связан с нагреванием, так как может наблюдаться и при неизменной температуре.

Электрическая проводимость возрастает вследствие разрыва связей и образования свободных электронов и дырок за счет энергии света, падающего на полупроводник. Это явление называют фотоэлектрическим эффектом.

Приборы, в которых используют фотоэлектрический эффект в полупроводниках, называют фоторезисторами или фотосопротивлениями. Миниатюрность и высокая чувствительность фоторезисторов позволяют использовать их в самых различных областях науки и техники для регистрации и измерения слабых световых потоков. С помощью фоторезисторов определяют качество поверхностей, контролируют размеры изделий и т. д.

Третий опыт: Добавление примеси в полупроводник

Посмотрите, что происходит?

Какой вывод можно сделать?

При введении в полупроводник примесей определенных веществ их электропроводность резко увеличивается.

Запишем в тетрадь свойства полупроводников

Электропроводность повышается при повышении температуры (терморезистор)

Электропроводность повышается при освещении (фоторезистор, солнечные батареи)

Электропроводность повышается при введении в полупроводник некоторых примесей. (полупроволниковый диод)

Свойства полупроводников зависят от их внутреннего строения. Рассмотрим кремний — четырехвадентный элемент (показать трехмерную модель) т. е. во внешней оболочке атома имеются четыре электрона, слабо связанные с ядром. Число ближайших соседей каждого атома кремния также равно четырем.

Взаимодействие пары соседних атомов осуществляется с помощью парноэлектронной связи, называемой ковалентной связью. В образовании этой связи от каждого атома участвует по одному валентному электрону. Атомы расположены так близко друг к другу, что их валентные электроны образуют единые орбиты, проходящие вокруг соседних атомов, тем самым связывая атомы в единое целое вещество.

Зарисуем получившуюся картинку в тетрадь.(рисунок на доске) Студенты выполняют такой же рисунок в тетради. Добавим больше соседних атомов.


При нагревании кремния кинетическая энергия частиц повышается, и наступает разрыв отдельных связей. Некоторые электроны становятся свободными и перемещаются между узлами решетки, образуя электрический ток. Проводимость полупроводников, обусловленную наличием у них свободных электронов, называют, электронной проводимостью. При разрыве связи образуется вакантное место с недостающим электроном — дырка.

При низких температурах связи не разрываются, поэтому кремний при низких температурах не проводит электрический ток.

Проводимость чистых полупроводников, без примесей (собственная проводимость) осуществляется перемещением свободных электронов (электронная проводимость) и перемещением связанных электронов на вакантные места парноэлектронных связей (дырочная проводимость). Проводимость полупроводников чрезвычайно сильно зависит от примесей. Именно эта зависимость сделала полупроводники тем, чем они стали в современной технике. Различают донорные и акцепторные примеси. При наличии донорной примеси в полупроводнике, если в кремний добавить мышьяк, наблюдается избыток электронов, полупроводник называется n -типа, при наличии акцепторных примесей, если в кремний добавить индий, наблюдается избыток дырок, полупроводник называется р-типа.

Шпак С.И. преподаватель физики КГБ ПОУ «КМТ», г. Владивостока

ПЛАН УРОКА

Урок № 39-40

Раздел: Электрический ток в различных средах.

Тема урока: Электрический ток в полупроводниках. Полупроводниковые приборы.

Цель:

    Дать понятие электронно – дырочной проводимости полупроводников. Объяснить виды проводимости. Рассмотреть устройство и принцип действия полупроводниковых приборов и их применение.

    Развивать политехнический кругозор.

    Воспитывать интерес к предмету.

Оборудование:

    Ноутбук;

    Интерактивная доска;

    ЦОР для ИД «Электрический ток в металлах» в программе Macromedia Flash ;

    ЦОР для ИД «Полупроводники» в программе Macromedia Flash ;

    Раздаточный материал: таблица Менделеева;

    Мини-стенд «Полупроводниковые приборы».

Литература:

    Мякишев Г.Я., Буховцев Б.Б., «Физика 10» Москва, «Просвещение», 2010г.

    Шахмаев М.Н., Шахмаев С.М. «Физика 10» Москва, «Просвещение», 2007г

    Дополнительный материал «Полупроводниковые приборы: устройство, принцип действия, применение».

Ход урока:

I Организационная часть

II Повторение

Вопросы для повторения темы «Электрический ток в металлах»:

    Какие основные носители зарядов в металлах. Какая проводимость у металлов.

    Рассказать и продемонстрировать на ИД опыты, подтверждающие существование в металлах свободных электронов (ЦОР для ИД «Электрический ток в металлах»).

    Решить задачу на расчет зависимости сопротивления металла от температуры (на местах):

Алюминиевая проволока при 0 0 С имеет сопротивление 4,25Ом. Каково ее сопротивление при 20 0 С? (Отве: 12,29 Ом)

III . Новый материал:

1. Полупроводники.

Работа в тетради:

Определение: Полупроводники – это вещества, удельное сопротивление которых зависит:

    От температуры,

    От наличия примесей,

    От изменения освещенности.

2. Механизм проводимости полупроводников

Слайд «Полупроводники»:

В обычном состоянии в полупроводниках связи электронов прочные и, следовательно, нет свободных носителей зарядов. При повышении температуры связи электронов нарушаются, и электроны становятся свободными, следовательно, сопротивление понижается и полупроводник проводит ток. Аналогично при изменении освещенности.

3. Полупроводниковые вещества.

Слайд «Полупроводниковые элементы»

Задание учащимся : Записать в тетрадь с помощью таблицы Менделеева все полупроводниковые вещества. Проверяем на ИД.

4. Проводимость полупроводников:

Работа в тетради:

Основные носители заряда в полупроводниках – электроны и дырки . Электроны – отрицательные, дырки – положительные.

Определение: Дырка – это место, с которого ушел электрон.

Следовательно, проводимость полупроводников электронная и дырочная .

Определение: Донорная примесь – избыток электронов, легко отдает электроны. Основные носители заряда – электроны. (n – тип).

Определение: Акцепторная примесь – недостаток электронов, легко принимает электроны. Основные носители заряда - дырки (р – тип)

Закрепляем материал составлением схемы: Слайд «Виды проводимости»

5. Электрический ток через контакт p n типа.

Слайд p - n переход: Демонстрация, объяснение преподавателя

n – p контакт – прямой переход,

p – n контакт – обратный переход.

6. Полупроводниковые приборы:

Работа с учебником:

Задание: изучить устройство и принцип действия полупроводниковых приборов. Составить описание прибора по плану.

(План описания прибора: название; устройство; принцип действия; применение).

Рассказать об устройстве и принципе действия прибора. Продемонстрировать работу прибора на ИД.

Полупроводниковый диод.

Слайд «Полупроводниковый диод»

Устройство :

В кристалл германия (n - тип) вводят акцепторную примесь индия (р – тип)

Принцип действия :

Вследствие диффузии атомов индия вглубь монокристалла германия, у поверхности германия возникает область с проводимостью р – типа. Остальная часть образца германия, в которую атомы индия не проникли, по - прежнему имеет проводимость n – типа. Между двумя областями с проводимостями разных типов и возникает р – n переход.

Применение:

Для выпрямления электрического тока в радиосхемах и ЭВМ.

Преимущества:

Малый размер, экономия электроэнергии, надежность, долговечность.

Недостатки:

Чувствительность к перепадам температуры.

Термистор.

Слайд «Термистор»

В полупроводниках сопротивление зависит от температуры, следовательно, терморезисторы используют для измерения температуры по силе тока.

Преимущества:

Малые размеры, любая форма, изменение температуры в пределах от 170К до 570К.

Применение:

Дистанционное измерение температуры, Противопожарная сигнализация.

Фоторезистор.

Слайд «Фоторезистор»

Сопротивление полупроводников зависит не только от температуры. Но и от освещенности. При увеличении освещения сила тока увеличивается так как уменьшается сопротивление. Используют для регистрации слабых световых потоков.

Преимущества:

Миниатюрность, высокая чувствительность.

Применение:

Определение качества обработки поверхности и контроль за размерами изделий.

7. Домашнее задание:

Обобщить материал с помощью таблицы

Полупроводниковые приборы:

Полупроводниковый прибор

Принцип действия

Применение

Тема урока: "Полупроводниковые приборы. Диоды"

Цель и задачи занятия:

    Образовательные:

формирование первоначального понятия о назначении, действии и основном свойстве полупроводниковых диодов.

    Воспитательные:

сформировать культуру умственного труда, развитие качеств личности - настойчивость, целеустремленность, творческую активность, самостоятельность.

    Развивающие:

обучение применению свойства односторонней проводимости.

Материально техническое оснащение урока:

рабочие тетради, компьютер преподавателя, интерактивная доска, прзентация на тему

Ход занятия:

1. Организационный момент:

(Задача: создание благоприятного психологического настроя и активация внимания).

2. Подготовка к повторению и обобщению пройденного материала

Что такое электрический ток.

Сила тока, единицы измерения.

p n переход.

Полупроводники.

Сообщение темы и цели занятия.

Полупроводники. Диоды.

Объяснение перспективы.

Чтобы изучить современную электронику, надо, прежде всего, знать принципы устройства и физические основы работы полупроводниковых приборов, их характеристики и параметры, а также важнейшие свойства, определяющие возможность их применения в электронной аппаратуре.

Использование полупроводниковых приборов дает огромную экономию в расходовании электрической энергии источников питания и позволяет во много раз уменьшить размеры и массу аппаратуры. Минимальная мощность для питания электронной лампы составляет 0,1 Вт, а для транзистора она может быть 1мкВт, т.е. в 100000 раз меньше.

3. Основной этап.

Новый материал

    Все вещества, встречающиеся в природе, по своим электропроводным свойствам делятся на три группы:

    Проводники,

    изоляторы (диэлектрики),

    полупроводники

    К полупроводникам относится гораздо больше веществ, чем к проводникам и изоляторам. В изготовлении радиоприборов наибольшее распространение получили 4-х валентные германий Ge и кремний Si.

    Электрический ток полупроводников обуславливается движением свободных электронов и так называемых "дырок".

    Свободные электроны, покинувшие свои атомы, создают n- проводимость (n - первая буква латинского слова negativus - отрицательный). Дырки создают в полупроводнике р - проводимость (р - первая буква латинского слова positivus- положительный).

    В чистом проводнике число свободных электронов и дырок одинаково.

    Добавляя примеси, можно получить полупроводник с преобладанием электронной или дырочной проводимостью.

    Важнейшее свойство р- и n- полупроводников - односторонняяя проводимость в месте спайки. Эта спайка называется p-n переходом.

В 4-х валентный кристалл германия (кремния) добавить 5-ти валентный мышьяк (сурьму) то получим n - проводник.

При добавлении 3-х валентного индия, получим р - проводник.

    Когда "плюс" источника соединен с р- областью, говорят что переход включен в прямом направлении, а когда минус источника тока соединен с р- областью, переход включен в обратном направлении.

    Одностороння проводимость р и n перехода является основой действия полупроводниковых диодов, транзисторов и др.

    Имея представление о полупроводнике, теперь приступим к изучению диода.

    Приставка "ди" - означает два, указывающая на две примыкающие зоны разной проводимости.

Вентиль велосипедной шины (нипель). Воздух через него может проходить лишь в одном направлении - внутрь камеры. Но существует и электрический вентиль. Это диод - полупроводниковая деталь с двумя проволочными выводами с обоих концов.

По конструкции полупроводниковые диоды могут быть плоскостными или точечными.

    Плоскостные диоды имеют большую площадь электронно- дырочного перехода и применяются в цепях, в которых протекают большие токи.

    Точечные диоды отличаются малой площадью электронно-дырочного перехода и применяются в цепях с малыми токами.

    Условно-графическое обозначение диода. Треугольник соответствует р- области и называется анодом, а прямолинейный отрезок, называется катодом, представляет n- область.

    В зависимости от назначения диода его УГО может иметь дополнительные символы.

Основные параметры, по которым характеризуются диоды.

    Прямой ток диода.

    Обратный ток диода.

Закрепление материала.

Изменение полярности подключения источника питания в цепи, содержащей полупроводниковый диод.

Соединяем последовательно батарею 3336Л и лампочку накаливания МН3,5 – 0.28 (на напряжение 3.5В и ток накала 0.28А) и подключаем эту цепь к сплавному диоду из серии Д7 или Д226 так, чтобы на анод диода непосредственно или через лампочку подавалось положительное, а на катод – отрицательное напряжение батареи (рис 3, рис.4). Лампочка должна гореть полным накалом. Затем изменяем полярность подключения цепи “батарея – лампочка” на обратную (рис. 3, рис.4). Если диод исправный – лампочка не горит. В этом опыте лампочка накаливания выполняет двойную функцию: служит индикатором тока в цепи и ограничивает ток в этой цепи до 0.28А, тем самым защищая диод от перегрузки. Последовательно с батареей и лампочкой накаливания можно включить еще миллиамперметр на ток 300…500мА, который бы фиксировал прямой и обратный ток через диод.

4.Контрольный момент:

    Начертите схему электрической цепи, состоящей из источника постоянного тока, микродвигателя, 2-х диодов, так, чтобы с помощью выключателей изменять направление вращение ротора микродвигателя.

    Определите полюса батареи для карманного фонаря с помощью полупроводникового диода.

    Самостоятельно изучите проводимость диода на демонстрационном стенде. Изучение односторонней проводимости диода.

5.Итоговый момент:

оценка успешности в достижении задач занятия (как работали, что узнали или усвоили)

6. Рефлективный момент:

определение результативности и полезности занятия через самооценку воспитанников.

7. Информационный момент:

определение перспектив следующего занятия .

8. Домашнее задание

Для закрепления пройденного материала, подумайте над следующими задачами и приведите их решение:

    Как с использованием полупроводникового диода защитить радиоаппаратуру от переполюсовки?

    Имеется электрическая цепь, в которую входят четыре последовательно соединенных элемента – две лампочки а и б и два выключателя А и Б. При этом каждый выключатель зажигает только одну, только “свою” лампочку. Для того, чтобы зажечь обе лампочки, нужно одновременно замкнуть оба выключателя.