Как подобрать и установить светодиодный драйвер своими руками. Драйверы для светодиодных лампочек Драйвер для led ленты

Гарантией яркости свечения, эффективности и долговечности LED-источников является правильное питание, которое могут обеспечить специальные электронные устройства - драйверы для светодиодов. Они преобразуют напряжение переменного тока в сети 220В в напряжение постоянного тока заданного значения. Разобраться в том, какую функцию выполняют преобразователи и на что обратить внимание при их выборе, поможет анализ основных видов и характеристик устройств.

Основной функцией драйвера для светодиодов является обеспечение стабилизированного тока, проходящего через LED-прибор. Значение тока, протекающего через кристалл полупроводника, должно соответствовать паспортным параметрам светодиода. Это обеспечит устойчивость свечения кристалла и поможет избежать его преждевременной деградации. Кроме того при заданном токе падение напряжения будет соответствовать величине, необходимой для p-n перехода. Узнать соответствующее напряжение питания светодиода можно воспользовавшись вольт-амперной характеристикой.

При освещении жилых и офисных помещений светодиодными лампами и светильниками применяют драйверы, питание которых обеспечивается от сети переменного тока 220В. В автомобильном освещении (фары, ДХО и пр.), велосипедных фарах, портативных фонарях используют источники питания постоянного напряжения в диапазоне от 9 до 36В. Некоторые светодиоды небольшой мощности можно подключать без драйвера, но тогда в схему включения светодиода в сеть 220 вольт должен быть внесен резистор.

Напряжение драйвера на выходе указывается в интервале двух конечных значений, между которыми обеспечивается стабильное функционирование. Существуют адаптеры с интервалом от 3В до нескольких десятков. Чтобы запитать схему из 3-х последовательно соединенных светодиодов белого цвета, каждый из которых имеет мощность 1 Вт, потребуется драйвер с выходными значениями U – 9-12В, I – 350 мА. Падение напряжения для каждого кристалла составит около 3,3В, а в общей сумме 9,9В, что войдет в диапазон драйвера.

Основные характеристики преобразователей

Перед тем как купить драйвер для светодиодов, следует ознакомиться с основными характеристиками устройств. К ним относят напряжение на выходе, номинальный ток и мощность. Выходное напряжение преобразователя зависит от величины падения напряжения на LED-источнике, а также от способа подключения и количества светодиодов в схеме. Ток находится в зависимости от мощности и яркости излучающих диодов. Драйвер должен обеспечить светодиодам такой ток, который необходим им для поддержки требуемой яркости.

Одной из важных характеристик драйвера считается мощность, которую прибор выдает в виде нагрузки. На выбор мощности драйвера влияет мощность каждого LED-прибора, общее количество и цвет свечения светодиодов. Алгоритм расчета мощности состоит в том, что максимальная мощность устройства не должна быть ниже потребления всех светодиодов:

P = P(led) × n ,

где P(led) – мощность единичного LED-источника, а n - количество светодиодов.

Кроме того должно выполняться обязательное условие, при котором бы обеспечивался запас мощности в пределах 25-30%. Таким образом значение максимальной мощности должно быть не меньше значения (1,3 х P).

Следует также брать во внимание цветовые характеристики светодиодов. Ведь различные по цвету полупроводниковые кристаллы имеют разную величину падения напряжения при прохождении через них тока одинаковой силы. Так падение напряжения у красного светодиода при токе 350 мА составляет 1,9-2,4В, тогда среднее значение его мощности будет равно 0,75 Вт. У аналога зеленого цвета величина падения напряжения находится в пределах от 3,3 до 3,9В и при таком же токе мощность составит уже 1,25 Вт. Значит к драйверу для светодиодов 12В можно подсоединить 16 красных LED-источников или 9 зеленых.

Полезный совет! При выборе драйвера для светодиодов специалисты советуют не пренебрегать максимальным значением мощности прибора.

Какими бывают драйверы для светодиодов по типу устройства

Драйверы для светодиодов классифицируют по типу устройства на линейные и импульсные. Структура и типовая схема драйвера для светодиодов линейного типа представляет собой генератор тока на транзисторе с р-каналом. Такие устройства обеспечивают плавную стабилизацию тока при условии неустойчивого напряжения на входном канале. Они являются простыми и дешевыми устройствами, однако отличаются низкой эффективностью, выделяют при работе много тепла и не могут быть использованы как драйвера для мощных светодиодов.

Импульсные устройства создают в выходном канале ряд высокочастотных импульсов. Их работа основана на принципе ШИМ (широтно-импульсной модуляции), когда средняя величина тока на выходе обуславливается коэффициентом заполнения, т.е. отношением длительности импульса к числу его повторений. Изменение величины среднего выходного тока происходит вследствие того, что частота импульсов остается неизменной, а коэффициент заполнения изменяется от 10-80%.

Благодаря высокому КПД преобразований (до 95%) и компактности устройств, они нашли широкое применение для портативных светодиодных конструкций. Кроме того, эффективность устройств положительно сказывается на длительности функционирования автономных приборов питания. Преобразователи импульсного типа имеют компактные размеры и отличаются обширным диапазоном входных напряжений. Недостатком этих устройств является высокий уровень электромагнитных помех.

Полезный совет! Приобретать LED-драйвер следует на этапе выбора светодиодных источников, предварительно определившись со схемой светодиодов от 220 вольт.

Перед тем как подобрать драйвер для светодиодов, необходимо знать условия его функционирования и место размещения светодиодных приборов. Широтно-импульсные драйверы, в основе которых лежит одна микросхема, имеют миниатюрные размеры и рассчитаны на питание от автономных низковольтных источников. Основное применение этих устройств – тюнинг автомобилей и светодиодная подсветка. Однако ввиду использования упрощенной электронной схемы качество таких преобразователей несколько ниже.

Диммируемые драйверы для светодиодов

Современные драйверы для светодиодов совместимы с устройствами регулирования яркости свечения полупроводниковых приборов. Использование диммируемых драйверов позволяет управлять уровнем освещенности в помещениях: снижать интенсивность свечения в дневное время, подчеркивать или скрывать отдельные элементы в интерьере, зонировать пространство. Это, в свою очередь, дает возможность не только рационально использовать электроэнергию, но и экономить ресурс светодиодного источника света.

Диммируемые драйверы бывают двух типов. Одни подсоединяются между блоком питания и LED-источниками. Такие устройства управляют энергией, поступающей от источника питания к светодиодам. В основе таких устройств используется ШИМ-управление, при котором энергия поступает к нагрузке в виде импульсов. Длительность импульсов определяет количество энергии от минимального до максимального значения. Драйверы такого типа применяются по большей части для светодиодных модулей с фиксированным напряжением, таких как светодиодные ленты, бегущие строки и др.

Управление драйвером осуществляется с помощью или ШИМ

Диммируемые преобразователи второго типа управляют непосредственно источником питания. Принцип их работы заключается как в ШИМ-регулировании, так и в управлении величиной протекающего через светодиоды тока. Диммируемые драйверы этого типа используются для LED-приборов со стабилизированным током. Стоит отметить, что при управлении светодиодами посредством ШИМ-регулирования наблюдаются негативно влияющие на зрение эффекты.

Сравнивая эти два метода регулирования, стоит отметить, что при регулировании величины тока через LED-источники наблюдается не только изменение яркости свечения, но и изменение цвета свечения. Так, белые светодиоды при меньшем токе излучают желтоватый свет, а при увеличении – светятся синим. При управлении светодиодами посредством ШИМ-регулирования наблюдаются негативно влияющие на зрение эффекты и высокий уровень электромагнитных помех. В связи с этим ШИМ-управление используется достаточно редко в отличие от регулирования тока.

Схемы драйверов для светодиодов

Многие производители выпускают для светодиодов микросхемы драйверов, позволяющие запитывать источники от пониженного напряжения. Все существующие драйверы делят на простые, выполненные на базе от 1-3 транзисторов и более сложные с использованием специальных микросхем с широтно-импульсной модуляцией.

Компания ON Semiconductor предлагает в качестве основы для драйверов широкий выбор микросхем. Они отличаются приемлемой стоимостью, отличной эффективностью преобразования, экономичностью и низким уровнем электромагнитных импульсов. Производителем представлен драйвер импульсного типа UC3845 с величиной тока на выходе до 1А. На такой микросхеме можно реализовать схему драйвера для светодиода 10W.

Электронные компоненты HV9910 (Supertex) являются популярной микросхемой для драйверов, благодаря простому схемному разрешению и невысокой цене. Она имеет встроенный регулятор напряжения и выводы для осуществления управления яркостью, а также вывод для программирования частоты переключений. Выходное значение тока составляет до 0,01А. На данной микросхеме возможно воплотить простой драйвер для светодиодов.

На базе микросхемы UCC28810 (пр-во компании Texas Instruments) можно создать схему драйвера для мощных светодиодов. В такой схеме LED-драйвера может создаваться выходное напряжение величиной 70-85В для светодиодных модулей, состоящих из 28 LED-источников током 3 А.

Полезный совет! Если вы планируете купить сверхяркие светодиоды мощностью 10 Вт, для конструкций из них можно использовать импульсный драйвер на микросхеме UCC28810.

Компания Clare предлагает создание простого драйвера импульсного типа на основе микросхемы CPC 9909. Она включает контроллер преобразователя, размещенного в компактном корпусе. За счет встроенного стабилизатора напряжения допускается питание преобразователя от напряжения 8-550В. Микросхема CPC 9909 позволяет эксплуатировать драйвер в условиях широкого разброса температурных режимов от -50 до 80°С.

Как подобрать драйвер для светодиодов

На рынке представлен широкий ассортимент драйверов для светодиодов от разных производителей. Многие из них, особенно китайского производства, отличаются низкой ценой. Однако покупать такие устройства не всегда выгодно, так как большинство из них не соответствует заявленным характеристикам. Кроме того такие драйверы не сопровождаются гарантией, а в случае обнаружения брака их нельзя вернуть или заменить на качественные.

Так существует вероятность приобретения драйвера, заявленная мощность которого составляет 50 W. Однако на деле оказывается, что эта характеристика имеет непостоянный характер и такая мощность является лишь кратковременной. В реальности же такое устройство будет работать как LED-driver 30W или максимум 40W. Так же может оказаться, что в начинке не будет хватать некоторых компонентов, отвечающих за устойчивое функционирование драйвера. Кроме того могут применяться компоненты низкого качества и с небольшим сроком службы, что является по сути браком.

При покупке стоит обращать внимание на указание бренда изделия. На качественном товаре обязательно будет указан изготовитель, который предоставит гарантию и будет готов отвечать за свою продукцию. Следует отметить, что и срок службы драйверов от проверенных производителей будет гораздо больше. Ниже приведено ориентировочное время работы драйверов в зависимости от изготовителя:

  • драйвер от сомнительных производителей – не более 20 тыс. часов;
  • устройства среднего качества – около 50 тыс. часов;
  • преобразователь от проверенной фирмы-изготовителя с использованием качественных компонентов – свыше 70 тыс. часов.

Полезный совет! Какого качества будет светодиодный драйвер – выбирать вам. Однако следует заметить, что особенно важно приобретать фирменный преобразователь, если речь идет о применении его для прожекторов из светодиодов и мощных светильников.

Расчет драйверов для светодиодов

Чтобы определить напряжение на выходе светодиодного драйвера, необходимо рассчитать отношение мощности (Вт) к значению тока (А). К примеру, драйвер имеет следующие характеристики: мощность 3 Вт и ток 0,3 А. Расчетное отношение составляет 10В. Таким образом, это будет максимальная величина выходного напряжения данного преобразователя.

Статья по теме:


Типы. Схемы подключения LED-источников. Расчет сопротивления для светодиодов. Проверка светодиода мультиметром. LED-конструкции своими руками.

Если необходимо подключить 3 LED-источника, ток каждого из которых составляет 0,3 мА при напряжении питания 3В. Подключая к светодиодному драйверу один из приборов, то выходное напряжение будет равно 3В и ток 0,3 А. Собрав последовательно два LED-источника, выходное напряжение будет равно 6В и ток 0,3 А. Добавив в последовательную цепочку третий светодиод, получим 9В и 0,3 А. При параллельном соединении 0,3 А одинаково распределятся между светодиодами по 0,1 А. Подключая светодиоды к устройству на 0,3 А при значении тока 0,7, им достанется всего 0,3 А.

Таков алгоритм функционирования светодиодных драйверов. Они выдают такое количество тока, на которое они рассчитаны. Способ подключения LED-приборов в этом случае не играет роли. Есть модели драйверов, предполагающие любое количество подключаемых к ним светодиодов. Но тогда существует ограничение по мощности LED-источников: она не должна превышать мощность самого драйвера. Выпускаются драйверы, рассчитанные на определенное число подключаемых светодиодов К ним разрешается подключить меньшее количество светодиодов. Но такие драйверы имеют низкую эффективность, в отличие от устройств, рассчитанных на конкретное количество LED-приборов.

Следует отметить, что у драйверов, рассчитанных на фиксированное количество излучающих диодов, предусмотрена защита от аварийных ситуаций. Такие преобразователи некорректно работают, если к ним подключить меньшее число светодиодов: они будут мерцать или вообще не будут светиться. Таким образом, если подключить к драйверу напряжение без соответствующей нагрузки, он будет работать нестабильно.

Где купить драйверы для светодиодов

Купить LED-driver можно в специализированных точках по продаже радиодеталей. Кроме того гораздо удобней ознакомиться с продукцией и заказать необходимое изделие, используя каталоги соответствующих сайтов. Помимо этого в интернет-магазинах можно приобрести не только преобразователи, а также приборы светодиодного освещения и сопутствующую продукцию: , устройства управления, средства подключения, электронные компоненты для ремонта и сборки драйвера для светодиодов своими руками.

Реализующими компаниями представлен огромный ассортимент драйверов для светодиодов, технические характеристики и цены которых можно увидеть в прайсах. Как правило цены на продукцию носят ориентировочный характер и уточняются при заказе у менеджера проекта. В ассортименте имеются преобразователи различной мощности и степени защиты, применяемые для наружного и внутреннего освещения, а также для подсветки и тюнинга автомобилей.

Выбирая драйвер следует учитывать условия его использования и потребляемую мощность светодиодной конструкции. Поэтому приобретать драйвер необходимо перед покупкой светодиодов. Так, прежде чем купить драйвер для светодиодов 12 вольт, необходимо принять во внимание, что он должен иметь запас мощности около 25-30%. Это нужно для того, чтобы уменьшить риск повреждения или полного выхода из строя прибора при коротком замыкании или перепадах напряжения в сети. Стоимость преобразователя зависит от количества приобретаемых устройств, формы оплаты и сроков доставки.

В таблице приведены основные параметры и размеры стабилизаторов напряжения 12 вольт для светодиодов с указанием их ориентировочной цены:

Модификация LD DC/AC 12 V Габариты, мм (в/ш/г) Выходной ток, A Мощность, W Цена, руб.
1x1W 3-4VDC 0.3A MR11 8/25/12 0,3 1х1 73
3x1W 9-12VDC 0.3A MR11 8/25/12 0,3 3х1 114
3x1W 9-12VDC 0.3A MR16 12/28/18 0,3 3х1 35
5-7x1W 15-24VDC 0.3A 12/14/14 0,3 5-7х1 80
10W 21-40V 0.3A AR111 21/30 0,3 10 338
12W 21-40V 0.3A AR11 18/30/22 0,3 12 321
3x2W 9-12VDC 0.4A MR16 12/28/18 0,4 3х2 18
3x2W 9-12VDC 0.45A 12/14/14 0,45 3х2 54

Изготовление драйверов для светодиодов своими руками

Используя готовые микросхемы, радиолюбители могут самостоятельно собирать драйверы для светодиодов различной мощности. Для этого необходимо уметь читать электрические схемы и иметь навыки работы с паяльником. Для примера можно рассмотреть несколько вариантов LED-драйверов своими руками для светодиодов.

Схему драйвера для светодиода 3W можно реализовать на основе микросхемы PT4115 китайского производства PowTech. Микросхема может быть применена для питания LED-приборов свыше 1W и включает в себя блоки управления, которые имеют на выходе достаточно мощный транзистор. Драйвер на базе PT4115 обладает высокой эффективностью и имеет минимальное количество компонентов обвязки.

Обзор PT4115 и технические параметры ее компонентов:

  • функция управление яркостью свечения (диммирование);
  • входное напряжение – 6-30В;
  • значение выходного тока – 1,2 А;
  • отклонение стабилизации тока до 5%;
  • предохранение от разрывов нагрузки;
  • наличие выводов для диммирования;
  • эффективность – до 97%.

Микросхема имеет следующие выводы:

  • для выходного переключателя – SW;
  • для сигнального и питающего участка схемы – GND;
  • для регулирования яркости – DIM;
  • входной датчик тока – CSN;
  • напряжение питания – VIN;

Схема драйвера для светодиодов своими руками на базе PT4115

Схемы драйвера для питания LED-приборов рассеивающей мощностью 3 Вт могут быть исполнены в двух вариантах. Первый предполагает наличие источника питания напряжением от 6 до 30В. В другой схеме предусмотрено питание от источника переменного тока напряжением от 12 до 18В. В этом случае в схему введен диодный мост, на выходе которого устанавливается конденсатор. Он способствует сглаживанию колебаний напряжения, емкость его составляет 1000 мкФ.

Для первой и второй схемы особое значение имеет конденсатор (CIN): этот компонент призван уменьшить пульсацию и компенсировать накопленную катушкой индуктивности энергию при закрытии MOP-транзистора. В отсутствие конденсатора вся энергия индуктивности через полупроводниковый диод ДШБ (D) попадет на вывод напряжения питания (VIN) и станет причиной пробоя микросхемы относительно питания.

Полезный совет! Следует обязательно учитывать, что подключение драйвера для светодиодов в отсутствие входного конденсатора не разрешается.

Учитывая количество и то, сколько потребляют светодиоды, рассчитывается индуктивность (L). В схеме светодиодного драйвера следует подбирать индуктивность, величина которой 68-220 мкГн. Об этом свидетельствуют данные технической документации. Можно допустить небольшое увеличение значения L, однако следует учесть, что тогда снизится КПД схемы в целом.

Как только подается напряжение, величина тока при прохождении его через резистор RS (работает как датчик тока) и L будет нулевая. Далее, CS comparator анализирует уровни потенциалов, находящихся до резистора и после него – в результате появляется высокая концентрация на выходе. Ток, идущий в нагрузку, нарастает до определенного значения, контролируемого RS. Ток увеличивается в зависимости от значения индуктивности и от величины напряжения.

Сборка компонентов драйвера

Компоненты обвязки микросхемы РТ 4115 подбираются с учетом указаний производителя. Для CIN следует применять низкоимпедансный конденсатор (конденсатор с низким ESR), так как применение других аналогов негативно скажется на эффективности драйвера. Если устройство будет запитано от блока со стабилизированным током, на входе понадобится один конденсатор емкостью от 4,7 мкФ. Его рекомендуется разместить рядом с микросхемой. Если ток переменный, потребуется ввести твердотельный танталовый конденсатор, емкость которого не ниже 100 мкФ.

В схему включения для светодиодов 3 Вт необходимо установить катушку индуктивности на 68 мкГн. Она должна располагаться как можно ближе к выводу SW. Можно сделать катушку самостоятельно. Для этого потребуется кольцо из вышедшего из строя компьютера и обмоточный провод (ПЭЛ-0,35). В качестве диода D можно использовать диод FR 103. Его параметры: емкость 15 пФ, время восстановления 150 нс, температура от -65 до 150°С. Он может справиться с импульсами тока до 30 А.

Минимальная величина резистора RS в схеме светодиодного драйвера составляет 0,082 Ом, ток – 1,2 А. Чтобы рассчитать резистор, необходимо использовать значение тока, необходимого для светодиода. Ниже приведена формула для расчета:

RS = 0,1 / I ,

где I – номинальная величина тока LED-источника.

Величина RS в схеме светодиодного драйвера составляет 0,13 Ом, соответственно значение тока – 780 мА. Если такой резистор не удается отыскать, можно использовать несколько низкоомных компонентов, используя при расчете формулу сопротивления для параллельного и последовательного включения.

Компоновка драйвера для светодиода 10 Ватт своими руками

Собрать драйвер для мощного светодиода можно самостоятельно, используя электронные платы от вышедших из строя люминесцентных ламп. Чаще всего в таких светильниках перегорают лампы. Электронная плата остается рабочей, что позволяет использовать ее компоненты для самодельных блоков питания, драйверов и других устройств. Для работы могут понадобиться транзисторы, конденсаторы, диоды, катушки индуктивности (дроссели).

Неисправную лампу необходимо аккуратно разобрать с помощью отвертки. Чтобы сделать драйвер для светодиода 10 Вт, следует воспользоваться люминесцентной лампой, мощность которой 20 Вт. Это необходимо для того, чтобы дроссель мог с запасом выдержать нагрузку. Для более мощной лампы следует либо подбирать соответствующую плату, либо заменить сам дроссель на аналог с большим сердечником. Для LED-источников с меньшей мощностью можно отрегулировать число витков обмотки.

Далее поверх первичных витков обмотки необходимо сделать 20 витков провода и с помощью паяльника соединить эту обмотку с выпрямительным диодным мостом. После этого следует подать напряжение от сети 220В и измерить выходное напряжение на выпрямителе. Его значение составило 9,7В. LED-источник через амперметр потребляет 0,83 А. Номинал этого светодиода 900 мА, однако чтобы заниженное потребление тока позволит увеличить его ресурс. Сборка диодного моста осуществляется путем навесного монтажа.

Новую плату и диодный мост можно разместить в подставке от старого настольного светильника. Таким образом, светодиодный драйвер можно собрать самостоятельно из имеющихся в наличии радиодеталей от вышедших из строя устройств.

В силу того что светодиоды достаточно требовательны к источникам питания, необходимо правильно подбирать к ним драйвер. Если преобразователь выбран правильно, можно быть уверенным, что параметры LED-источников не ухудшатся и светодиоды прослужат положенный им срок.

Светодиоды, в последние годы серьезно потеснившие все остальные источники света, сегодня можно встретить повсеместно. Они используются в квартирах и офисах, освещают улицы, украшают здания и интерьеры. Но для правильной работы полупроводникового источника света необходим качественный и надежный драйвер для светодиодов. Сегодня мы поговорим об этом исключительно важном узле и разберемся, почему этот драйвер так необходим, как он работает, и даже попытаемся сделать led driver своими руками.

Что такое драйвер и зачем он нужен

Если заглянуть в англо-русский словарь, то можно узнать, что драйвер – это буквально «водитель» (driver – водитель, англ.). Откуда такое странное название и что он водит? Для того чтобы в этом разобраться, немного отвлечемся и поговорим о светодиодах.

Светодиод (led) – полупроводниковый прибор, способный излучать свет под воздействием приложенного к нему напряжения. Причем для правильной работы полупроводника напряжение, обеспечивающее оптимальный ток через кристалл, должно быть постоянным и строго стабилизированным. Особенно это касается мощных светодиодов, которые крайне критически относятся к всевозможным перепадам и скачкам питающего тока. Стоит питанию диода чуть снизиться, как упадет ток и, как следствие, уменьшится светоотдача. При малейшем превышении нормальной величины тока полупроводник мгновенно перегревается и сгорает.

Основное назначение драйвера – обеспечить светоизлучающий диод необходимым для его нормальной работы током. Таким образом, led драйвер – это, по сути, блок питания для светодиодов, их «водитель», обеспечивающий длительную и качественную работу полупроводникового осветителя.

Мнение эксперта

Алексей Бартош

Задать вопрос эксперту

Ты не встретишь ни одного осветительного прибора, имеющего в своем составе мощный светодиод, который бы не имел драйвера. Поэтому так важно разобраться, какими бывают драйверы, как они работают и какими характеристиками должны обладать.

Виды светодиодных драйверов

Все драйверы для светодиодов можно разделить по принципу стабилизации тока. На сегодняшний день таких принципов два:

  1. Линейный.
  2. Импульсный.

Линейный стабилизатор

Предположим, в нашем распоряжении мощный светодиод, который нужно зажечь. Соберем простейшую схему:


Схема, поясняющая линейный принцип регулировки тока

Выставляем резистором R, выполняющим роль ограничителя, нужное значение тока – светодиод горит. Еcли напряжение питания изменилось (к примеру, батарея садится), поворачиваем движок резистора и восстанавливаем необходимый ток. Если увеличилось, то таким же образом ток уменьшаем. Именно это и делает простейший линейный стабилизатор: следит за током через светодиод и при необходимости “крутит ручку” резистора. Только делает он это очень быстро, успевая реагировать на малейшее отклонение тока от заданной величины. Конечно, никакой ручки у драйвера нет, ее роль выполняет транзистор, но суть пояснения от этого не меняется.

В чем недостаток линейной схемы стабилизатора тока? Дело в том, что через регулирующий элемент тоже течет ток и бесполезно рассеивает мощность, которая просто греет воздух. Причем чем входное напряжение больше, тем выше потери. Для светодиодов с небольшим рабочим током такая схема годится и успешно используется, но мощные полупроводники линейным драйвером питать себе дороже: драйверы могут съедать больше энергии, чем сам осветитель.

К преимуществам такой схемы питания можно отнести относительную простоту схемотехники и невысокую стоимость драйвера, сочетающуюся с высокой надежностью.


Линейный драйвер для питания светодиода в карманном фонаре

Импульсная стабилизация

Перед нами тот же светодиод, но схему питания соберем несколько иную:


Схема, поясняющая принцип работы широтно-импульсного стабилизатора

Теперь вместо резистора у нас кнопка КН и добавлен накопительный конденсатор С. Подаем напряжение на схему и нажимаем кнопку. Конденсатор начинает заряжаться, и при достижении на нем рабочего напряжения светодиод загорается. Если продолжать держать кнопку нажатой, то ток превысит допустимую величину, и полупроводник сгорит. Отпускаем кнопку. Конденсатор продолжает питать светодиод и постепенно разряжается. Как только ток опустится ниже допустимого для светодиода значения, снова нажимаем кнопку, подпитывая конденсатор.

Вот так сидим и периодически жмем кнопку, поддерживая нормальный режим работы светодиода. Чем выше питающее напряжение, тем нажатия будут короче. Чем напряжение ниже, тем кнопку придется держать нажатой дольше. Это и есть принцип широтно-импульсной модуляции. Драйвер следит за током через светодиод и управляет ключом, собранным на транзисторе или тиристоре. Делает он это очень быстро (десятки и даже сотни тысяч нажатий в секунду).

С первого взгляда работа утомительная и сложная, но только не для электронной схемы. Зато КПД импульсного стабилизатора может достигать 95%. Даже при питании потери энергии минимальны, а ключевые элементы драйвера не требуют мощных теплоотводов. Конечно, импульсные стабилизаторы несколько сложнее по конструкции и дороже, но все это окупается высокой производительностью, исключительным качеством стабилизации тока и отличными массогабаритными показателями.


Этот импульсный драйвер способен выдать ток до 3 А безо всяких радиаторов

Как подобрать драйвер для светодиодов

Разобравшись с принципом работы led driver, осталось научиться их правильно выбирать. Если ты не забыл основ электротехники, полученных в школе, то дело это нехитрое. Перечислим основные характеристики преобразователя для светодиодов, которые будут участвовать в выборе:

  • входное напряжение;
  • выходное напряжение;
  • выходной ток;
  • выходная мощность;
  • степень защиты от окружающей среды.

Прежде всего, необходимо решить, от какого источника будет питаться твой светодиодный светильник. Это может быть сеть 220 В, бортовая сеть автомобиля или любой другой источник как переменного, так и постоянного тока. Первое требование: то напряжение, которое ты будешь использовать, должно укладываться в диапазон, указанный в паспорте на драйвер в графе «входное напряжение». Кроме величины, нужно учесть и род тока: постоянный или переменный. Ведь в розетке, к примеру, ток переменный, а в автомобиле – постоянный. Первый принято обозначать аббревиатурой АС, второй DC. Почти всегда эту информацию можно увидеть и на корпусе самого прибора.


Этот драйвер рассчитан для работы от сети переменного тока напряжением от 100 до 265 В

Далее переходим к выходным параметрам. Предположим, у тебя есть три светодиода на рабочее напряжение 3.3 В и ток 300 мА каждый (указано в сопроводительной документации). Ты решил сделать настольную лампу, схема соединения диодов последовательная. Складываем рабочие напряжения всех полупроводников, получаем падение напряжения на всей цепочке: 3.3 * 3 = 9.9 В. Ток при таком соединении остается тем же – 300 мА. Значит, тебе нужен драйвер с выходным напряжением 9.9 В, обеспечивающий стабилизацию тока на уровне 300 мА.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Все полупроводники, работающие от одного драйвера, должны быть однотипными и желательно из одной партии. В противном случае, неизбежен разброс параметров светодиодов, в результате которого один из них будет светить вполнакала, а второй быстро сгорит.

Конечно, именно на это напряжение прибор найти не удастся, но это и не нужно. Все драйверы рассчитаны не на конкретное напряжение, а на некоторый диапазон. Твоя задача – уложить свое значение в этот диапазон. А вот выходной ток должен точно соответствовать 300 мА. В крайнем случае он может быть несколько меньше (лампа будет светить не так ярко), но никогда не больше. Иначе твоя самоделка сгорит сразу либо через месяц.

Идем дальше. Выясняем, какой мощности драйвер нам нужен. Этот параметр должен как минимум совпадать с потребляемой мощностью нашей будущей лампы, а лучше превышать это значение на 10-20%. Как рассчитать мощность нашей «гирлянды» из трех светодиодов? Вспоминаем: электрическая мощность нагрузки – это ток, идущий через нее, умноженный на приложенное напряжение. Берем калькулятор и перемножаем общее рабочее напряжение всех светодиодов на ток, предварительно переведя последний в амперы: 9.9 * 0.3 = 2.97 Вт.

Последний штрих. Конструктивное исполнение. Прибор может быть как в корпусе, так и без него. Первый, естественно, боится пыли и влаги, и в плане электробезопасности он не лучший вариант. Если ты решил встроить драйвер в лампу, корпус которой является хорошей защитой от окружающей среды, тогда подойдет. Но если корпус лампы имеет кучу вентиляционных отверстий (светодиоды должны охлаждаться), а само устройство будет стоять в гараже, то лучше выбрать источник питания в собственном корпусе.

Итак, нам нужен светодиодный драйвер со следующими характеристиками:

  • питающее напряжение – сеть 220 В переменного тока;
  • выходное напряжение – 9.9 В;
  • выходной ток – 300 мА;
  • выходная мощность – не менее 3 Вт;
  • корпус – пылевлагозащитный.

Отправляемся в магазин и смотрим. Вот он:


Драйвер для питания светодиодов

Причем не просто подходящий, а идеально соответствующий запросам. Слегка пониженный выходной ток продлит жизнь светодиодов, но на яркости их свечения это абсолютно никак не отразится. Потребляемая мощность упадет до 2.7 Вт – будет запас мощности драйвера.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Если у тебя очень большое количество светодиодов, то при последовательном включении их общее напряжение может превысить максимально возможное для существующих драйверов. В этом случае обратись к разделу Схема подключения драйвера к светодиодам, который находится в конце этой статьи.

В чем отличия между драйвером для светодиодов и блоком питания для LED ленты

Бытует мнение, что блоки питания для – нечто другое, чем обычный led драйвер. Попробуем прояснить этот вопрос, а заодно научимся правильно выбирать драйвер для светодиодной ленты. Светодиодная лента – это гибкая подложка, на которой расположены все те же светодиоды. Они могут стоять в 2, 3, 4 ряда, это не так важно. Важнее разобраться, как они соединены между собой.

Все полупроводники на ленте разбиты на группы по 3 светодиода, соединенных последовательно через токоограничивающий резистор. Все группы, в свою очередь, соединены параллельно:


Электрическая схема одной секции (слева) и всей светодиодной ленты

Лента продается в бобинах обычно длиной по 5 м и рассчитана на рабочее напряжение 12 или 24 В. В последнем случае в каждой группе будет не 3, а 6 светодиодов. Предположим, ты купил ленту на 12 В с удельной потребляемой мощностью 14 Вт/м. Таким образом, общая мощность, потребляемая всей бобиной, составит 14 * 5 = 70 Вт. Если тебе не нужна такая длинная, ты можешь отрезать ненужную часть с условием, что будешь резать ее между секциями. Например, ты отрезал половину. Какие характеристики при этом изменятся? Только потребляемая мощность: она уменьшится вдвое.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Не забывай, что разрезать светодиодную ленту можно только между секциями по 3 светодиода (для 24-х вольтовой их будет 6), которые хорошо видны. На рисунке ниже я пометил их стрелками.


Места разделения секций хорошо видны и даже помечены пиктограммами ножниц

Надо ли ограничивать и стабилизировать ток через обычный светодиод? Безусловно, иначе он сгорит. Но мы совсем забыли о резисторе, установленном в каждой секции ленты. Он служит для ограничения тока и подобран таким образом, что при подаче на секцию ровно 12-ти вольт ток через светодиоды будет оптимальным. В задачу драйвера светодиодной ленты входит удержание питающего напряжение строго на уровне 12 В. Все остальное берет на себя токоограничивающий резистор.

Таким образом, главное отличие блока питания led ленты от обычного led драйвера – четко фиксированное выходное напряжение 12 или 24 В. Здесь уже не получится использовать обычный драйвер с выходным напряжением, скажем, от 9 до 14 В.

Остальные критерии выбора блока питания для светодиодной ленты следующие:

  • входное напряжение . Методика выбора та же, что и для обычного драйвера: прибор должен быть рассчитан на то входное напряжение и тот род тока, которым ты будешь питать светодиодную ленту;
  • выходная мощность . Мощность блока питания должна быть минимум на 10% выше мощности ленты. При этом слишком большой запас брать не стоит: снижается КПД всей конструкции;
  • класс защиты от окружающей среды . Методика та же, что и для светодиодного драйвера (см. выше): в прибор не должны попадать пыль и влага.

Драйвер для светодиодной ленты – не что иное, как высококачественный, но обычный стабилизатор напряжения. Он выдает строго фиксированное напряжение, но абсолютно не следит за выходным током. При желании и для эксперимента вместо него ты можешь использовать, к примеру, блок питания от ПК (шина 12 В). Яркость и долговечность ленты от этого не пострадают.

Схема подключения драйвера к светодиодам

Подключить драйвер к светодиодам просто, с этим справится каждый. Вся маркировка нанесена на его корпус. На входные провода (INPUT) подаешь входное напряжение, к выходным (OUTPUT) подключаешь линейку светодиодов. Единственно, необходимо соблюдать полярность, и на этом я остановлюсь подробнее.

Полярность входа (INPUT)

Если питающее драйвер напряжение постоянное, то вывод, помеченный знаком «+» необходимо подключить к положительному полюсу источника питания. Если напряжение переменное, то обрати внимание на маркировку входных проводов. Возможны следующие варианты:

  1. Маркировка «L» и «N»: на вывод «L» нужно подать фазу (находится при помощи индикаторной отвертки), на вывод «N» – ноль.
  2. Маркировка «~», «АС» или отсутствует: полярность соблюдать не нужно.

Полярность выхода (OUTPUT)

Здесь полярность соблюдается всегда! Плюсовой провод подключается к аноду первого светодиода, минусовой – к катоду последнего. Сами светодиоды соединяются между собой: анод последующего к катоду предыдущего.


Схема подключения драйвера к гирлянде из трех последовательно включенных светодиодов

Если у тебя очень много светодиодов (скажем, 12 шт.), то их придется разбить на несколько одинаковых групп, а эти группы соединить параллельно. При этом учти, что общая потребляемая светильником мощность составит сумму мощностей всех групп, а рабочее напряжение будет соответствовать напряжению одной группы.


Для применения светодиодов в качестве источников освещения обычно требуется специализированный драйвер. Но бывает так, что нужного драйвера под рукой нет, а требуется организовать подсветку, например, в автомобиле, или протестировать светодиод на яркость свечения. В этом случае можно сделать для светодиодов своими руками.

Как сделать драйвер для светодиодов

В приведенных ниже схемах используются самые распространенные элементы, которые можно приобрести в любом радиомагазине. При сборке не требуется специальное оборудование, — все необходимые инструменты находятся в широком доступе. Несмотря на это, при аккуратном подходе устройства работают достаточно долго и не сильно уступают коммерческим образцам.

Необходимые материалы и инструменты

Для того, чтобы собрать самодельный драйвер, потребуются:

  • Паяльник мощностью 25-40 Вт. Можно использовать и большей мощности, но при этом возрастает опасность перегрева элементов и выхода их из строя. Лучше всего использовать паяльник с керамическим нагревателем и необгораемым жалом, т.к. обычное медное жало довольно быстро окисляется, и его приходится чистить.
  • Флюс для пайки (канифоль, глицерин, ФКЭТ, и т.д.). Желательно использовать именно нейтральный флюс, — в отличие от активных флюсов (ортофосфорная и соляная кислоты, хлористый цинк и др.), он со временем не окисляет контакты и менее токсичен. Вне зависимости от используемого флюса после сборки устройства его лучше отмыть с помощью спирта. Для активных флюсов эта процедура является обязательной, для нейтральных — в меньшей степени.
  • Припой. Наиболее распространенным является легкоплавкий оловянно-свинцовый припой ПОС-61. Бессвинцовые припои менее вредны при вдыхании паров во время пайки, но обладают более высокой температурой плавления при меньшей текучести и склонностью к деградации шва со временем.
  • Небольшие плоскогубцы для сгибания выводов.
  • Кусачки или бокорезы для обкусывания длинных концов выводов и проводов.
  • Монтажные провода в изоляции. Лучше всего подойдут многожильные медные провода сечением от 0.35 до 1 мм2.
  • Мультиметр для контроля напряжения в узловых точках.
  • Изолента или термоусадочная трубка.
  • Небольшая макетная плата из стеклотекстолита. Достаточно будет платы размерами 60х40 мм.

Макетная плата из текстолита для быстрого монтажа

Схема простого драйвера для светодиода 1 Вт

Одна из самых простых схем для питания мощного светодиода представлена на рисунке ниже:

Как видно, помимо светодиода в нее входят всего 4 элемента: 2 транзистора и 2 резистора.

В роли регулятора тока, проходящего через led, здесь выступает мощный полевой n-канальный транзистор VT2. Резистор R2 определяет максимальный ток, проходящий через светодиод, а также работает в качестве датчика тока для транзистора VT1 в цепи обратной связи.

Чем больший ток проходит через VT2, тем большее напряжение падает на R2, соответственно VT1 открывается и понижает напряжение на затворе VT2, тем самым уменьшая ток светодиода. Таким образом достигается стабилизация выходного тока.

Питание схемы осуществляется от источника постоянного напряжения 9 — 12 В, ток не менее 500 мА. Входное напряжение должно быть минимум на 1-2 В больше падения напряжения на светодиоде.

Резистор R2 должен рассеивать мощность 1-2 Вт, в зависимости от требуемого тока и питающего напряжения. Транзистор VT2 – n-канальный, рассчитанный на ток не менее 500 мА: IRF530, IRFZ48, IRFZ44N. VT1 – любой маломощный биполярный npn: 2N3904, 2N5088, 2N2222, BC547 и т.д. R1 – мощностью 0.125 — 0.25 Вт сопротивлением 100 кОм.

Ввиду малого количества элементов, сборку можно производить навесным монтажом:

Еще одна простая схема драйвера на основе линейного управляемого стабилизатора напряжения LM317:

Здесь входное напряжение может быть до 35 В. Сопротивление резистора можно рассчитать по формуле:

где I – сила тока в амперах.

В этой схеме на LM317 будет рассеиваться значительная мощность при большой разнице между питающим напряжением и падением на светодиоде. Поэтому ее придется разместить на небольшом . Резистор также должен быть рассчитан на мощность не менее 2 Вт.

Более наглядно эта схема рассмотрена в следующем видео:

Здесь показано, как подключить мощный светодиод, используя аккумуляторы напряжением около 8 В. При падении напряжения на LED около 6 В разница получается небольшая, и микросхема нагревается несильно, поэтому можно обойтись и без радиатора.

Обратите внимание, что при большой разнице между напряжением питания и падением на LED необходимо ставить микросхему на теплоотвод.

Схема мощного драйвера с входом ШИМ

Ниже показана схема для питания мощных светодиодов:

Драйвер построен на сдвоенном компараторе LM393. Сама схема представляет собой buck-converter, то есть импульсный понижающий преобразователь напряжения.

Особенности драйвера

  • Напряжение питания: 5 — 24 В, постоянное;
  • Выходной ток: до 1 А, регулируемый;
  • Выходная мощность: до 18 Вт;
  • Защита от КЗ по выходу;
  • Возможность управления яркостью при помощи внешнего ШИМ сигнала (интересно будет почитать, как ).

Принцип действия

Резистор R1 с диодом D1 образуют источник опорного напряжения около 0.7 В, которое дополнительно регулируется переменным резистором VR1. Резисторы R10 и R11 служат датчиками тока для компаратора. Как только напряжение на них превысит опорное, компаратор закроется, закрывая таким образом пару транзисторов Q1 и Q2, а те, в свою очередь, закроют транзистор Q3. Однако индуктор L1 в этот момент стремится возобновить прохождение тока, поэтому ток будет протекать до тех пор, пока напряжение на R10 и R11 не станет меньше опорного, и компаратор снова не откроет транзистор Q3.

Пара Q1 и Q2 выступает в качестве буфера между выходом компаратора и затвором Q3. Это защищает схему от ложных срабатываний из-за наводок на затворе Q3, и стабилизирует ее работу.

Вторая часть компаратора (IC1 2/2) используется для дополнительной регулировки яркости при помощи ШИМ. Для этого управляющий сигнал подается на вход PWM: при подаче логических уровней ТТЛ (+5 и 0 В) схема будет открывать и закрывать Q3. Максимальная частота сигнала на входе PWM — порядка 2 КГц. Также этот вход можно использовать для включения и отключения устройства при помощи пульта ДУ.

D3 представляет собой диод Шоттки, рассчитанный на ток до 1 А. Если не удастся найти именно диод Шоттки, можно использовать импульсный диод, например FR107, но выходная мощность тогда несколько снизится.

Максимальный ток на выходе настраивается подбором R2 и включением или исключением R11. Так можно получить следующие значения:

  • 350 мА (LED мощностью 1 Вт): R2=10K, R11 отключен,
  • 700 мА (3 Вт): R2=10K, R11 подключен, номинал 1 Ом,
  • 1А (5Вт): R2=2,7K, R11 подключен, номинал 1 Ом.

В более узких пределах регулировка производится переменным резистором и ШИМ – сигналом.

Сборка и настройка драйвера

Монтаж компонентов драйвера производится на макетной плате. Сначала устанавливается микросхема LM393, затем самые маленькие компоненты: конденсаторы, резисторы, диоды. Потом ставятся транзисторы, и в последнюю очередь переменный резистор.

Размещать элементы на плате лучше таким образом, чтобы минимизировать расстояние между соединяемыми выводами и использовать как можно меньше проводов в качестве перемычек.

При соединении важно соблюдать полярность подключения диодов и распиновку транзисторов, которую можно найти в техническом описании на эти компоненты. Также диоды можно в режиме измерения сопротивления: в прямом направлении прибор покажет значение порядка 500-600 Ом.

Для питания схемы можно использовать внешний источник постоянного напряжения 5-24 В или аккумуляторы. У батареек 6F22 («крона») и других слишком маленькая емкость, поэтому их применение нецелесообразно при использовании мощных LED.

После сборки нужно подстроить выходной ток. Для этого на выход припаиваются светодиоды, а движок VR1 устанавливается в крайнее нижнее по схеме положение (проверяется мультиметром в режиме «прозвонки»). Далее на вход подаем питающее напряжение, и вращением ручки VR1 добиваемся требуемой яркости свечения.

Список элементов:

Заключение

Первые две из рассмотренных схем очень просты в изготовлении, но они не обеспечивают защиты от короткого замыкания и обладают довольно низким КПД. Для долговременного использования рекомендуется третья схема на LM393, поскольку она лишена этих недостатков и обладает более широкими возможностями по регулировке выходной мощности.

Светодиоды получили большую популярность. Главную роль в этом сыграл светодиодный драйвер, поддерживающий постоянный выходной ток определенного значения. Можно сказать, что это устройство представляет собой источник тока для LED-приборов. Такой драйвер тока, работая вместе со светодиодом, обеспечивает долголетний срок службы и надежную яркость. Анализ характеристик и видов этих устройств позволяет понять, какие они выполняют функции, и как их правильно выбирать.

Что такое драйвер и каково его назначение?

Драйвер для светодиодов является электронным устройством, на выходе которого образуется постоянный ток после стабилизации. В данном случае образуется не напряжение, а именно ток. Устройства, которые стабилизируют напряжение, называются блоками питания. На их корпусе указывается выходное напряжение. Блоки питания 12 В применяют для питания LED-линеек, светодиодной ленты и модулей.

Основным параметром LED-драйвера, которым он сможет обеспечивать потребителя длительное время при определенной нагрузке, является выходной ток. В качестве нагрузки применяются отдельные светодиоды или сборки из аналогичных элементов.

Драйвер для светодиода обычно питается от сети напряжением 220 В. В большинстве случаев диапазон рабочего выходного напряжения составляет от трех вольт и может достигать нескольких десятков вольт. Для подключения светодиодов 3W в количестве шести штук потребуется драйвер с выходным напряжением от 9 до 21 В, рассчитанный на 780 мА. При своей универсальности он обладает малым КПД, если на него включить минимальную нагрузку.

При освещении в автомобилях, в фарах велосипедов, мотоциклов, мопедов и т. д., в оснащении переносных фонарей используется питание с постоянным напряжением, значение которого варьируется от 9 до 36 В. Можно не применять драйвер для светодиодов с небольшой мощностью, но в таких случаях потребуется внесение соответствующего резистора в питающую сеть напряжением 220 В. Несмотря на то, что в бытовых выключателях используется этот элемент, подключить светодиод к сети 220 В и рассчитывать на надежность достаточно проблематично.

Основные особенности

Мощность, которую эти устройства способны отдавать под нагрузкой, является важным показателем. Не стоит перегружать его, пытаясь добиться максимальных результатов. В результате таких действий могут выйти из строя драйверы для светодиодов или же сами LED-элементы.


На электронную начинку устройства влияет множество причин:

  • класс защиты аппарата;
  • элементная составляющая, которая применяется для сборки;
  • параметры входа и выхода;
  • марка производителя.

Изготовление современных драйверов выполняется при помощи микросхем с использованием технологии широтно-импульсного преобразования, в состав которых входят импульсные преобразователи и схемы, стабилизирующие ток. ШИМ-преобразователи запитываются от 220 В, обладают высоким классом защиты от коротких замыканий, перегрузок, а так же высоким КПД.

Технические характеристики

Перед приобретением преобразователя для светодиодов следует изучить характеристики устройства. К ним относятся следующие параметры:

  • выдаваемая мощность;
  • выходное напряжение;
  • номинальный ток.

Схема подключения LED-драйвера

На выходное напряжение влияет схема подключения к источнику питания, количество в ней светодиодов. Значение тока пропорционально зависит от мощности диодов и яркости их излучения. Светодиодный драйвер должен выдавать столько тока для светодиодов, сколько потребуется для обеспечения постоянной яркости. Стоит помнить, что мощность необходимого устройства должна быть более потребляемой всеми светодиодами. Рассчитать ее можно, используя следующую формулу:

P (led) – мощность одного LED-элемента;

n - количество LED-элементов.

Для обеспечения длительной и стабильной работы драйвера следует учитывать запас мощности устройства в 20–30% от номинальной.


Выполняя расчет, следует учитывать цветовой фактор потребителя, так как он влияет на падение напряжения. У разных цветов оно будет иметь отличающиеся значения.

Срок годности

Светодиодные драйверы, как и вся электроника, обладают определенным сроком службы, на который сильно влияют эксплуатационные условия. LED-элементы, изготовленные известными брендами, рассчитаны на работу до 100 тысяч часов, что намного дольше источников питания. По качеству рассчитанный драйвер можно классифицировать на три типа:

  • низкого качества, с работоспособностью до 20 тысяч часов;
  • с усредненными параметрами - до 50 тысяч часов;
  • преобразователь, состоящий из комплектующих известных брендов - до 70 тысяч часов.

Многие даже не знают, зачем обращать внимание на этот параметр. Это понадобится для выбора устройства для длительного использования и дальнейшей окупаемости. Для использования в бытовых помещениях подойдет первая категория (до 20 тысяч часов).

Как подобрать драйвер?

Насчитывается множество разновидностей драйверов, используемых для LED-освещения. Большинство из представленной продукции изготовлено в Китае и не имеет нужного качества, но выделяется при этом низким ценовым диапазоном. Если нужен хороший драйвер, лучше не гнаться за дешевизной китайского производства, так как их характеристики не всегда совпадают с заявленными, и редко когда к ним прилагается гарантия. Может быть брак на микросхеме или быстрый выход из строя устройства, в таком случае не удастся совершить обмен на более качественное изделие или вернуть средства.


Наиболее часто выбираемым вариантом является бескорпусный драйвер, питающийся от 220 В или 12 В. Различные модификации позволяют использовать их для одного или более светодиодов. Эти устройства можно выбрать для организации исследований в лаборатории или же проведения экспериментов. Для фито-ламп и бытового применения выбирают драйверы для светодиодов, находящиеся в корпусе. Бескорпусные устройства выигрывают в ценовом плане, но проигрывают в эстетике, безопасности и надежности.

Виды драйверов

Устройства, осуществляющие питание светодиодов, условно можно разделить на:

  • импульсные;
  • линейные.

Устройства импульсного типа производят на выходе множество токовых импульсов высокой частоты и работают по принципу ШИМ, КПД у них составляет до 95%. Импульсные преобразователи имеют один существенный недостаток - во время работы возникают сильные электромагнитные помехи. Для обеспечения стабильного выходного тока в линейный драйвер установлен генератор тока, который играет роль выхода. Такие устройства имеют небольшой КПД (до 80%), но при этом просты в техническом плане и стоят недорого. Такие устройства не получится использовать для потребителей большой мощности.

Из вышеперечисленного можно сделать вывод, что источник питания для светодиодов следует выбирать очень тщательно. Примером может послужить люминесцентная лампа, на которую подается ток, превышающий норму на 20%. В ее характеристиках практически не произойдет изменений, а вот работоспособность светодиода уменьшится в несколько раз.

Наверное, каждый, даже начинающий радиолюбитель знает, что для того чтобы подключить обычный светодиод к источнику питания нужен всего один резистор. А как быть если светодиод мощный? Ватт так на 10. Как быть тогда?
Я вам покажу способ сделать простой драйвер для мощного светодиода всего из двух компонентов.

Для стабилизатора-драйвера нам понадобиться:
1. Резистор – .
2. Микросхема – LM317 – .


LM317 – это микросхема стабилизатор. Отлично подходит для конструирования регулируемых источников питания или драйверов для питания светодиодов, как в нашем случае.

Достоинства LM317

  • Диапазон стабилизации напряжения от 1,7 (включая напряжение светодиода – 3 В) до 37 В. Отличная характеристика, для автомобилистов: яркость не будет плавать на любых оборотах;
  • Выходной ток до 1,5 можно подключать несколько мощных светодиодов;
    Стабилизатор имеет встроенную систему защиты от перегрева и короткого замыкания.
  • Минусовое питание светодиода в схеме включения берется от источника питания, поэтому при креплении к корпусу автомобиля уменьшается количество монтажных проводов, а корпус может играет роль большого теплоотвода для светодиода.

Схема драйвера для мощного светодиода


Я буду подключать светодиод на 3 Ватта.В итоге нам нужно будет рассчитать сопротивление под наш светодиод. Светодиод мощностью 1 Вт потребляет 350 мА, а 3-х ваттный – 700 мА (можно посмотреть в даташит). Микросхема LM317 – имеет опорное напряжение стабилизатора – 1,25 – это число постоянное. Его нужно поделить на ток и получиться сопротивление резистора. То есть: 1,25 / 0,7 = 1,78 Ом. Ток берем в амперах. Выбираем ближайший резистор по сопротивлению, так как резисторов сопротивлением 1,78 не бывает. Берем 1,8 и собираем схему.

Если мощность вашего светодиода превышает 1 Вт, то микросхему необходимо установить на радиатор. Вообще LM317 рассчитана на ток до 1,5.
Питать нашу схему можно напряжение от 3 до 37 вольт. Согласитесь, солидный диапазон питания получается. Но чем больше напряжение, тем больше греется микросхема, учтите это.